F12-EE102-FINAL-PREP

A Past Final

QUESTION 1 (40%) (+HINTS)

(i) A system S is described by the IPOP relation:

$$
\mathbf{y(t)} = \mathbf{x(t)} - \int_{-\infty}^{t} e^{-(t-\tau)} \sin(t-\tau) \mathbf{x(\tau)} d\tau, \quad t > -\infty
$$

$$
\forall t > -\infty : \qquad \mathbf{x(t)} \longrightarrow [S] \longrightarrow \mathbf{y(t)}
$$

(a) Show relationships, if any, between the OP:

$$
y_1(t) := \int_{-\infty}^{\infty} \delta(t - \tau) U(\tau) d\tau - \int_0^t e^{-(t - \tau)} \sin(t - \tau) d\tau, \quad t \ge 0
$$

and the OP:

$$
y_2(t) := \int_{-\infty}^{\infty} \delta(t - \tau) \, \delta(\tau) d\tau - \int_{-\infty}^{t} e^{-(t - \tau)} \sin(t - \tau) \, \delta(\tau) \, d\tau, \quad t \ge 0
$$

We have

$$
U(t) \longrightarrow [S] \longrightarrow y_1(t) = g(t) \leftarrow \text{USR}
$$

and

$$
\delta(t) \longrightarrow [S] \longrightarrow y_2(t) = h(t) \leftarrow \text{IRF}
$$

$$
\Rightarrow \qquad h(t) = \frac{dg(t)}{dt}
$$

(b) Find the FRF (Frequency Response Function) $H(i\omega)$ of S.

We have

——————————————–

$$
H(s) = 1 - \frac{1}{(s+1)^2 + 1} = \frac{(s+1)^2}{(s+1)^2 + 1}, \quad \mathcal{R}e s > -1 \Rightarrow i\omega \in DOC
$$

Therefore

$$
H(i\omega) := H(s)|_{s=i\omega} = \frac{(1+i\omega)^2}{1 + (1+i\omega)^2}
$$

(c) Let

$$
\mathbf{x(t)} = \cos \mathbf{t}, \quad \mathbf{t} \in \mathbf{R}
$$

be the IP to S and let $y(t)$ be the corresponding OP:

———————————————–

———————————————

$$
\forall \mathbf{t} > -\infty : \qquad \mathbf{x}(\mathbf{t}) = \cos \mathbf{t} \longrightarrow [\ \mathbf{S} \] \longrightarrow \ \mathbf{y}(\mathbf{t})
$$

Find $Y(i\omega) := \mathcal{F}{y(t)}$ then compute $y(t)$ by taking $\mathcal{F}^{-1}{Y(i\omega)}$. Describe another method of finding $y(t)$ — but do not recompute $y(t)$.

We have

$$
Y(i\omega) = H(i\omega) \mathcal{F}\lbrace cost\rbrace
$$

= $H(i\omega) \pi \lbrace \delta(\omega + 1) + \delta(\omega - 1) \rbrace$
 $\Rightarrow y(t) = \mathcal{F}^{-1} \lbrace Y(i\omega) \rbrace$
= $\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} Y(i\omega) d\omega$
= $\frac{3}{5} \cos t + \frac{1}{5} \sin t, \quad t \in \mathbb{R}$

Second Method

—————————–

$$
y(t) := y_1(t) + y_2(t)
$$

\n
$$
\frac{1}{2}e^{i\omega t} \to [S] \to y_1(t), \quad t \in \mathbf{R}
$$

\n
$$
\frac{1}{2}e^{-i\omega t} \to [S] \to y_2(t), \quad t \in \mathbf{R}
$$

(ii) Compute the signal $f(t)$ whose Fourier Transform $F(i\omega)$ is given in terms of its amplitude:

$$
|F(i\omega)| = -\omega, \text{ for } -1 \le \omega < 0,
$$

= 1, for $0 \le \omega < 1$,
= 0, otherwise,

and its phase:

—————————–

—————————

————————-

————————

$$
\Theta(\omega) = \frac{\pi}{2}, \quad \omega < 0,
$$

= $-\frac{\pi}{2}, \quad \omega \ge 0.$

$$
f(t) = \frac{-i}{2\pi} \int_{-1}^{0} e^{i\omega t} \omega \, d\omega
$$

= $\frac{1}{2\pi} \{ e^{-it} \left[\frac{1}{t} + i \frac{1}{t^2} \right] - \frac{i}{t^2} \}, \quad t \in \mathbb{R}$

(iii) Let $f(t)$ be a periodic signal with period T, then you know that $f(t)$ admits the Complex Exponentials Fourier Series Expansion:

$$
f(t) = \sum_{n = -\infty}^{\infty} F_n e^{in\omega_0 t}, \quad \omega_0 := \frac{2\pi}{T}
$$

where F_n , $n = 0, \pm 1, \pm 2, \ldots$, are the Fourier Coefficients of $f(t)$.

If F_n are real, what can you conclude about $f(t)$?

If F_n and $f(t)$ are both real, what can you conclude about $f(t)$?

If F_n are real then $f(t)$ admits the FS:

$$
f(t) = \sum_{n=-\infty}^{\infty} F_n \cos n\omega_0 t + i \sum_{n=-\infty}^{\infty} F_n \sin n\omega_0 t
$$

= $f_{even}(t) + i f_{odd}(t)$

If $f(t)$ and F_n are real then $f(t)$ admits the FS:

$$
f(t) = F_0 + \sum_{n=1}^{\infty} 2F_n \cos n\omega_0 t
$$

= $f(-t)$ (1)

(iv) Find $y(t)$ given that

$$
\forall \, t \in (-\infty, \infty) : \quad \cos(5\,t + \frac{\pi}{2}) \implies [\, \mathbf{S} \, \colon \, \mathbf{H}(\mathbf{i}\omega) \,] \longrightarrow \, \mathbf{y}(\mathbf{t}) = ?
$$

where S is a LTI system with FRF $H(i\omega)$.

What would your answer be if, in addition, the system S is also Real¹?

$$
y(t) := y_1(t) + y_2(t)
$$

\n
$$
y_1(t) := \leftarrow [S] \leftarrow \frac{1}{2} e^{(5t + \frac{\pi}{2})}
$$

\n
$$
y_2(t) := \leftarrow [S] \leftarrow \frac{1}{2} e^{-(5t + \frac{\pi}{2})}
$$

Therefore

————————–

$$
y(t) = \frac{1}{2} \{ H(i5)e^{(5t + \frac{\pi}{2})} + H(-i5)e^{-(5t + \frac{\pi}{2})} \}
$$

If S is a Real System then

$$
\overline{H(i\omega)} = H(-i\omega) \quad \Rightarrow \quad y(t) = \mathcal{R}e\{H(i\omega)e^{(5t+\frac{\pi}{2})}\}
$$

¹that is its IRF $h(t)$ is real

QUESTION 2 (30%)

Consider the cascaded combination S_{12} of LTIC systems S_1 and S_2 :

$$
\mathbf{x(t)} \rightarrow [\mathbf{S_1}:\mathbf{L}\mathbf{T}\mathbf{I}\mathbf{C}] \rightarrow [\mathbf{S_2}:\mathbf{L}\mathbf{T}\mathbf{I}\mathbf{C}] \rightarrow \mathbf{z(t)}
$$

where

$$
\mathbf{x}(t) = e^{-t} \, U(t)
$$

and

$$
\mathbf{z}(\mathbf{t}) = \left[\cos \mathbf{t} + \sin \mathbf{t} - \mathbf{e}^{-\mathbf{t}}\right] \mathbf{U}(\mathbf{t})
$$

(i) Compute the IRF $h_{12}(t)$ of the cascaded system S_{12} .

Now suppose that S_1 is described by the IPOP relation:

$$
\mathbf{x(t)} \to [\mathbf{S_1} : \mathbf{L}\mathbf{T}\mathbf{I}\mathbf{C}] \to \mathbf{y(t)} = \int_{-\infty}^{\mathbf{t}} \mathbf{x(\sigma)d\sigma}, \quad \mathbf{t} > -\infty
$$

Your problem is to write down the System Function $H_2(s)$ and the IRF $h_2(t)$ of S_2 .

(ii)) Derive the FRF $H_2(i\omega)$ of system S_2 — from its System Function $H_2(s)$ — if possible. If it is NOT possible find $H_2(i\omega)$ by "your" method. (iii) Consider again:

$$
\mathbf{x(t)} \to [\mathbf{S_1} : \mathbf{L}\mathbf{T}\mathbf{I}\mathbf{C}] \to \mathbf{y(t)} = \int_{-\infty}^{\mathbf{t}} \mathbf{x(\sigma)d\sigma}, \quad \mathbf{t} > -\infty
$$

where

$$
x(t) = e^t, \quad t < 0
$$

$$
= e^{-t}, \quad t \ge 0
$$

Your problem is to find the output $y(t)$ — by any method which you are most comfortable with.

QUESTION 3 (30%)

(i) Let $x(t)$ be the periodic signal defined over one period by

$$
x(t) = \begin{cases} \sin(\pi t), & -\frac{1}{2} \le t \le \frac{1}{2}, \\ 0, & -1 \le t < -\frac{1}{2} \text{ and } \frac{1}{2} < t \le 1. \end{cases}
$$

Plot $x(t)$, then write down the Fourier Sine-Cosine series representation of $x(t)$. Then compute the MSE (Mean Square Error) when $x(t)$ is approximated by the finite series of the form

$$
\widehat{x}(t) = \sum_{n=-1}^{1} X_n e^{in\omega_0 t}.
$$
 (*)

(ii) The periodic signal $x(t)$ of Part (i) is now applied to a LTIC system S whose IRF is $h(t)U(t)$

$$
\mathbf{x(t)} \longrightarrow [\mathbf{S}:\mathbf{h(t)U(t)}] \longrightarrow \mathbf{y(t)}
$$

a) Write down the Fourier Series representation of $y(t)$ — assuming that $h(t) U(t)$ is known.

b) Now let $x(t)$ be approximated by $\hat{x}(t)$ as in (\star) and consider

$$
\hat{\mathbf{x}}(t) \longrightarrow [\mathbf{S}: \mathbf{h}(t)\mathbf{U}(t)] \longrightarrow \hat{\mathbf{y}}(t)
$$

Can you conclude that $\hat{y}(t)$ is an approximation of $y(t)$ — in the same way as $\hat{x}(t)$ is that of $x(t)$? If so write down an expression for the MSE

$$
\overline{\mathcal{E}_1^2}(y)
$$

c) Under what conditions would you have

$$
\overline{\mathcal{E}_1^2}(x) = \overline{\mathcal{E}_1^2}(y)?
$$

The End Happy Holidays To All