
Systems and Signals Lee, Spring 2009-10

EE102

Final Practice Solutions

Problem 1. Fourier Series

A linear amplifier has an output y that is proportional to the input x,

y = a1x

where a1 is a constant. In practice an amplifier will have a more complex characteristic

y = a0 + a1x+ a2x
2 + a3x

3 + · · ·

If we apply an input
x(t) = cos(ω0t)

ideally we would get an output spectrum that looks like

ω0−ω0−2ω0−3ω0 3ω02ω00 ω

1
2

where we’ve assumed a1 = 1 for simplicity.

In practice we get something different, and this tells us something about the amplifier char-
acteristic.

For each of the following amplifier characteristics, determine what the output Fourier series
spectrum looks like when the inputs is x(t) = cos(ω0t).

Hint: What does the spectra of cosn(t) look like for different n? Don’t integrate!

Solution: We can find the Fourier transform of cos2(ω0t) easily by frequency domain con-
volution

F
[
cos2(ω0t)

]
=

1

2π
(π(δ(ω − ω0) + δ(ω + ω0)) ∗ (π(δ(ω − ω0) + δ(ω + ω0))

=
π

2
(δ(ω − 2ω0) + 2δ(ω) + δ(ω + 2ω0))

The Fourier series coefficients are just the Fourier transform coefficients divided by 2π, so

D±2 =
1

4
, and D0 =

1

2
.
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and all of the other coefficients are zero. Similarly, you found cos3(ω0t) to be

F
[
cos3(ω0t)

]
=

1

2π
F
[
cos2(ω0t)

]
∗ F [cos(ω0t)]

=
1

2π

(
π

2
(δ(ω − 2ω0) + 2δ(ω) + δ(ω + 2ω0)) ∗ (π(δ(ω − ω0) + δ(ω + ω0))

)
=

π

4
(δ(ω − 3ω0) + 3δ(ω − ω0) + 3δ(ω + ω0) + δ(ω + 3ω0))

The Fourier series coefficients are then

D±3 =
1

8
, and D±1 =

3

8

a) Find the output Fourier series spectrum when the amplifier characteristic is

y = x+ 0.1 x3.

Solution:
y(t) = cos(ω0t) + 0.1 cos3(ω0t)

The Fourier series spectrum of y(t) will be the sum of the spectrum for cos(ω0t) and
the spectrum 0.1 cos3(ω0t). The Fourier series spectrum of cos(ω0t) is

D±1 =
1

2

The Fourier series spectrum of 0.1 cos3(ω0t) is

D±3 = (0.1)
1

8
=

1

80

D±1 = (0.1)
3

8
=

3

80

The sum of these is then

D±3 =
1

80

D±1 =
1

2
+

3

80
=

43

80

This is plotted below.
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b) Find the output Fourier series spectrum when the amplifier characteristic is

y = −0.1 + x+ 0.2 x2

Solution: Again, the Fourier series coefficients are the sum of the coefficients of each
term. These are

D±2 = 0.2
(

1

4

)
=

1

20

D±1 =
1

2

D0 = −0.1 + (0.2)
(

1

2

)
= 0

This is plotted below.

ω0−ω0−2ω0−3ω0 3ω02ω00 ω

1
2

1
2

1
2

1
20

1
20

3



Problem 2. Sampling Timing Errors

Imperfections in a sampler cause characteristic artifacts in the sampled signal. In this
problem we will look at the case where the sample timing is non-uniform, as shown
below

t0 1 2 3−3 −2 −1

τ f (t)

The sampling function f(t) has its odd samples delayed by a small time τ .

a) Write an expression for f(t) in terms of two uniformly spaced sampling functions.

Solution: The even samples are a δ train separated by 2, with no shift. The
odd samples are also a δ train separated by 2, but delayed by 1 + τ . Adding these
together

f(t) = δ2(t) + δ2(t− (1 + τ))

f(t) = δ2(t) + δ2(t− (1 + τ))
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b) Find F (jω), the Fourier transform of f(t). Express the impulse trains as sums,
and simplify.

Solution: The Fourier transform is

F (jω) = πδπ(ω) + πδπ(ω)e−jω(1+τ)

= πδπ(ω)(1 + e−jω(1+τ))

where ω0 = 2π
2

= π for the impulse train.

Expanding the impulse train,

F (jω) = π
∞∑

n=−∞
δ(ω − nπ)(1 + e−jω(1+τ))

= π
∞∑

n=−∞
δ(ω − nπ)(1 + e−jnπ(1+τ))

= π
∞∑

n=−∞
δ(ω − nπ)(1 + e−jnπe−jnπτ))

= π
∞∑

n=−∞
δ(ω − nπ)(1 + (−1)ne−jnπτ )

F (jω) = π
∞∑

n=−∞
δ(ω − nπ)(1 + (−1)ne−jnπτ )
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c) Find F (jω) for the case where τ = 0, and show that this is what you expect.

Solution: If τ = 0

F (jω) = π
∞∑

n=−∞
δ(ω − nπ)(1 + (−1)ne−jnπτ)

= π
∞∑

n=−∞
δ(ω − nπ)(1 + (−1)n)

The (1+(−1)n) term is 2 for n even, and 0 for n odd. Hence, the odd terms drop,
and we get a factor of two for the remaining even terms,

F (jω) = π
∞∑

n=−∞
δ(ω − 2nπ)(2)

= 2π
∞∑

n=−∞
δ(ω − 2nπ)

= 2πδ2π(ω)

which is the Fourier transform of δ1(t). This is what we expect. As τ goes to
zero, we expect that the non-uniform sampling case should go to the uniform case.
This will provide a reality check for the next part.

When τ = 0, then F (jω) = 2πδ2π(ω)
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d) Assume the signal we are sampling has a Fourier transform

π−π ω

G( jω)
1

Sketch the Fourier transform of the sampled signal. Include the baseband replica,
and the replicas at ω = ±π. Assume that τ is small, so that ejωτ ' 1 + jωτ .

Solution: The sampled signal is f(t)g(t), which has a Fourier transform

Ḡ(jω) =
1

2π
[F (jω) ∗G(jω)]

=
1

2π

[[
π

∞∑
n=−∞

δ(ω − nπ)(1 + (−1)ne−jnπτ )

]
∗∆(ω/π)

]

=
1

2

∞∑
n=−∞

∆
(
ω − nπ
π

)
(1 + (−1)ne−jnπτ )

We are interested in the baseband replica (n=0) , and the replicas at ±π (n= ±
1). For n = 0,

Ḡ0(jω) =
1

2
∆
(
ω

π

)
(1 + 1) = ∆

(
ω

π

)
which is the same as G(jω). For n = 1,

Ḡ1(jω) =
1

2
∆
(
ω − π
π

)
(1 + (−1)1e−jπτ )

=
1

2
∆
(
ω − π
π

)
(1− e−jπτ )

If we approximate e−jπτ ' 1− jπτ ,

Ḡ1(jω) =
1

2
∆
(
ω − π
π

)
(1− (1− jπτ))

=
jπτ

2
∆
(
ω − π
π

)
This is a replica of G(jω) centered at ω = π, multiplied by jπτ/2. It is imaginary,
and proportional to τ , so that as τ goes to zero, this replica disappears as we’d
expect.
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For n = −1 we get the same type of term, but with the negative sign,

Ḡ−1(jω) =
−jπτ

2
∆
(
ω + π

π

)
This is a replica of G(jω) centered at ω = −π, and scaled by −jπτ/2.

If we sketch these three terms, the result is as shown below.

π−π ω

1
Ḡ( jω)

jπτ
2

− jπτ
2
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e) If we know g(t) is real and even, can we recover g(t) from the non-uniform samples
g(t)f(t)?

Solution We know that in the limit at τ goes to zero, that we can perfectly
reconstruct g(t), since we will then be sampling at the Nyquist rate. From the
answer to the previous part, this does indeed happen. The replicas at ±π are
proportional to τ , and will go to zero.

Looking at the solution for the previous part, we can see that the part of the
spectrum we want is all in the real component. If g(t) is real and even, then
G(jω) is real and even. Hence, if we lowpass filter, and take the real part of the
spectrum, we can recover G(jω).

It actually turns out that if we know τ , we can recover any bandlimited g(t). The
symmetry is not required. This is a harder problem, but you can figure it out if
you are interested.

Can we recover g(t)? yes no
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Problem 3. Laplace Transforms and Stability

For each of these assertions, determine whether they are true or false. Provide an
argument for your conclusion. Remember that an unstable system has poles either
in the right-half plane (diverging solutions) or on the jω axis (oscillating or constant
solutions).

a) Let h(t) be the impulse response of a stable, causal system. Then
d

dt
h(t) is also

stable.

Solution:

L
[
d

dt
h(t)

]
= sH(s)

Differentiating in time adds a zero at s = 0 to the Laplace transform. This doesn’t
effect stability, so a stable system will remain stable. The assertion is then true.

The assertion is (circle one): true false

b) Let h(t) be the impulse response of a stable, causal system. Then
∫ t

−∞
h(τ)dτ

must be unstable.

Solution:

L
[∫ t

−∞
h(τ)dτ

]
=

1

s
H(s)

This adds a pole at s = 0, which would seem to result in an unstable system by
the definition given above. However, H(s) may have a zero at s = 0, in which case
the two cancel, and the system remains stable. Hence, the result is not necessarily
an unstable system.

The assertion is (circle one): true false
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c) H(s) is the transfer function of a stable, causal system. The zeros of H(s) must
be in the right-half plane for the inverse system Hinv(s) to be stable.

Solution:

The transfer function of an inverse system is

Hinv(s) =
1

H(s)

Hence, the zeros of H(s) become the poles of Hinv(s) (and the poles of H(s)
become the zeros of Hinv(s), but that doesn’t concern us here).

If H(s) has zeros in the right-half plane, Hinv(s) will have poles is the right-half
plane. These correspond to increasing exponential solutions, and are unstable.
The assertion is then false.

The assertion is (circle one): true false
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