MIDTERM

You have 2 hours for 4 problems.

- 1. Show neat work in the clear spaces on this exam to convince us that you derived, not guessed, your answers.
- 2. Show your final answers in the boxes at the end of each question.

Closed book. Closed notes. You can use one hand-written letter sheet for your reference.

 $\overline{}$

1. *Linear Time Invariant System*

Determine the linearity and time invariance of the systems given below.

(a)
$$
y(t) = x^2(t) + x(t-2) + 3
$$

- i. Input $\alpha x(t)$ into the system, the output is $\hat{y}(t) = \alpha^2 x^2(t) + \alpha x(t-2) + 3$. $\hat{y}(t)$ does not equal the scaled output $y(t)$: $\alpha y(t) = \alpha x^2(t) + \alpha x(t-2) + 3\alpha$. So the system is *NOT* linear.
- ii. Input delayed signal $\hat{x}(t) = x(t T)$. Then, the corresponding output is $\hat{y}(t) =$ $\hat{x}^2(t) + \hat{x}(t-2) + 3 = x^2(t-T) + x(t-2-T) + 3.$
- iii. Delayed $y(t)$ gives: $y(t-T) = x^2(t-T) + x(t-T-2) + 3$, which is equals $\hat{y}(t)$. Therefore, the system is *Time Invariant*.

(b)
$$
y(t) = \int_{0}^{t} x(\tau + 2) d\tau
$$

i. Input $\alpha x(t)$ into the system, the output is $\hat{y}(t) = \int\limits_0^t$ 0 $\alpha x(\tau+2)d\tau=\alpha\int\limits_0^t$ 0 $x(\tau + 2)d\tau = \alpha y(t).$

ii. Input $\hat{x}(t) = x_1(t) {+} x_2(t)$ into the system, the output is $\hat{y}(t) = \int\limits_0^t {dt} \hat{y}(t)dt$ $\int_{0}^{1} (x_1(\tau + 2) + x_2(\tau + 2))d\tau =$ \int $\int_{0}^{t} x_1(\tau+2) d\tau + \int_{0}^{t}$ $\int_{0}^{x_2(\tau+2)d\tau} = y_1(t) + y_2(t)$. Thus, the system is *Linear*.

- iii. Input delayed signal $\hat{x}(t) = x(t T)$, then, the corresponding output is $\hat{y}(t) =$ \int 0 $x(\tau+2-T)d\tau=\int_{0}^{t-T}$ $-T$ $x(\tau+2)d\tau.$
- iv. Delayed $y(t)$ gives: $y(t-T) = \int_0^{t-T}$ 0 $x(\tau+2)d\tau$, which is *NOT* equal to $\hat{y}(t)$. Therefore, the system is *NOT Time Invariant*.

2. *Signal Operations*

A signal $x(t)$ is as given below:

(a) Try to decompose the signal into an combination of scaled *Trianglular* and *Rectangular* functions. Write the expression for $x(t)$ in the box.

$$
tri(t) = \begin{cases} 1 - |t| & |t| \le 1 \\ 0 & otherwise \end{cases}
$$

$$
rect(t) = \begin{cases} 1 & |t| \le \frac{1}{2} \\ 0 & otherwise \end{cases}
$$

 $x(t) = 2tri(\frac{1}{2})$ $(\frac{1}{2}t) + rect(t - \frac{3}{2})$ $(\frac{3}{2}) - tri[\frac{1}{2}]$ $rac{1}{2}(t-3)]$ (b) Find and plot the *even* and *odd* part of the signal.

(c) Plot the following signals:

3. *Convolution*

(a) Convolve the following two signals and plot your result.

(hint: Utilizing the linearity of the system, consider decomposing $x(t)$ into simpler signals, and convolving them with $h(t)$ separately.)

(b) An LTI system's *Step Response* is the output when the *Unit Step* signal u[n] is igiven as input to the system:

Suppose the following signal yu[n] is the step response of the system. Find its *Impulse Response* h[n].

(hint: $\delta[n] = u[n] - u[n-1]$)

4. *Fourier Series*

A sampler is a system which is very often used in Analog to Digital Conversions.

An ideal sampling process can be represented as multiplying the signal $x(t)$ by a sampling impulse train $\Delta(t) = \sum_{ }^{+\infty}$ $\sum_{n=-\infty} \delta(t - nT)$. (See figure below.) The output of the sampling system can be written as $y(t) = x(t) \sum_{ }^{+\infty}$ $\sum_{n=-\infty} \delta(t - nT).$

- (a) Is this system Linear and Time Invariant?
	- i. Input $\alpha x(t)$, output is $\alpha x(t) \stackrel{+\infty}{\sum}$ $\sum_{n=-\infty} \delta(t - nT) = \alpha y(t).$
	- ii. Input $x_1(t) + x_2(t)$, output is $(x_1(t) + x_2(t)) \sum_{i=1}^{+\infty}$ $\sum\limits_{n=-\infty}\delta(t-nT)=y_1(t)+y_2(t)$, thus the system is linear.
	- iii. If delay the input $x(t)$ by $0 \leq s \leq T$, then the sampled point will be totally different, and cannot be represented by delayed y(t). Thus the system is *NOT Time Invariant*.

(b) Find the Fourier Series of the sampling impulse train $\Delta(t) = \sum_{n=1}^{+\infty}$ $\sum_{n=-\infty} \delta(t - nT).$

$$
a_k = \frac{1}{T} \int_{t=-\frac{T}{2}}^{\frac{T}{2}} \delta(t) e^{-j\frac{2\pi kt}{T}} dt
$$

\n
$$
a_k = \frac{1}{T} \int_{t=-\frac{T}{2}}^{\frac{T}{2}} \delta(t) e^{-j\frac{2\pi k0}{T}} dt
$$

\n
$$
a_k = \frac{1}{T} \int_{t=-\frac{T}{2}}^{\frac{T}{2}} \delta(t) dt
$$

\n
$$
a_k = \frac{1}{T}
$$

$$
a_k = \frac{1}{T}
$$

(c) Find the Fourier Series b_k of a shifted and scaled Δ signal:

$$
\Delta_2(t) = \Delta(\frac{T}{4} - t)
$$

To get $\Delta_2(t)$ there are two steps: 1. flip $\Delta(t)$ get $\Delta_1(t)$ then the Fourier Series of $\Delta_1(t)$: $c_k = a_{-k}$. 2. Shift $\Delta_1(t)$ to the right by $\frac{T}{4}$ get $\Delta_2(t)$ then the Fourier Series of $\Delta_2(t)$: $b_k = c_k e^{-j\frac{2\pi k(T/4)}{T}} = c_k e^{-j\frac{k\pi}{2}} = a_{-k} e^{-j\frac{k\pi}{2}} = \frac{1}{T}$ $\frac{1}{T}e^{-j\frac{k\pi}{2}}$

$$
b_k = \frac{1}{T}e^{-j\frac{k\pi}{2}}
$$