Signals and Systems Jin Hyung Lee

MIDTERM

Name: UID:

You have 2 hours for 4 problems.

- 1. Show neat work in the clear spaces on this exam to convince us that you derived, not guessed, your answers.
- 2. Show your final answers in the boxes at the end of each question.

Closed book. Closed notes. You can use one hand-written letter sheet for your reference.

Problem	Score
1	
2	
3	
4	
Total	

1. Linear Time Invariant System

Determine the linearity and time invariance of the systems given below.

(a)
$$y(t) = x^2(t) + x(t-2) + 3$$

- i. Input $\alpha x(t)$ into the system, the output is $\hat{y}(t) = \alpha^2 x^2(t) + \alpha x(t-2) + 3$. $\hat{y}(t)$ does not equal the scaled output y(t): $\alpha y(t) = \alpha x^2(t) + \alpha x(t-2) + 3\alpha$. So the system is *NOT* linear.
- ii. Input delayed signal $\hat{x}(t) = x(t T)$. Then, the corresponding output is $\hat{y}(t) = \hat{x}^2(t) + \hat{x}(t-2) + 3 = x^2(t-T) + x(t-2-T) + 3$.
- iii. Delayed y(t) gives: $y(t T) = x^2(t T) + x(t T 2) + 3$, which is equals $\hat{y}(t)$. Therefore, the system is *Time Invariant*.

The system is Linear	True	False
The system is Time Invariant	True	False

(b)
$$y(t) = \int_{0}^{t} x(\tau + 2)d\tau$$

i. Input $\alpha x(t)$ into the system, the output is $\hat{y}(t) = \int_{0}^{t} \alpha x(\tau+2)d\tau = \alpha \int_{0}^{t} x(\tau+2)d\tau = \alpha y(t)$.

ii. Input $\hat{x}(t) = x_1(t) + x_2(t)$ into the system, the output is $\hat{y}(t) = \int_0^t (x_1(\tau+2) + x_2(\tau+2))d\tau = \int_0^t x_1(\tau+2)d\tau + \int_0^t x_2(\tau+2)d\tau = y_1(t) + y_2(t)$. Thus, the system is *Linear*.

- iii. Input delayed signal $\hat{x}(t) = x(t T)$, then, the corresponding output is $\hat{y}(t) = \int_{0}^{t} x(\tau + 2 T)d\tau = \int_{-T}^{t-T} x(\tau + 2)d\tau$.
- iv. Delayed y(t) gives: $y(t T) = \int_{0}^{t-T} x(\tau + 2)d\tau$, which is *NOT* equal to $\hat{y}(t)$. Therefore, the system is *NOT Time Invariant*.

The system is Linear	True	False
The system is Time Invariant	True	False

2. Signal Operations

A signal x(t) is as given below:

(a) Try to decompose the signal into an combination of scaled *Trianglular* and *Rectangular* functions. Write the expression for x(t) in the box.

$$tri(t) = \begin{cases} 1 - |t| & |t| \le 1\\ 0 & otherwise \end{cases}$$
$$rect(t) = \begin{cases} 1 & |t| \le \frac{1}{2}\\ 0 & otherwise \end{cases}$$

 $x(t) = 2tri(\frac{1}{2}t) + rect(t - \frac{3}{2}) - tri[\frac{1}{2}(t - 3)]$

(b) Find and plot the *even* and *odd* part of the signal.

(c) Plot the following signals:

3. Convolution

(a) Convolve the following two signals and plot your result.

(hint: Utilizing the linearity of the system, consider decomposing x(t) into simpler signals, and convolving them with h(t) separately.)

(b) An LTI system's *Step Response* is the output when the *Unit Step* signal u[n] is igiven as input to the system:

Suppose the following signal $y_u[n]$ is the step response of the system. Find its *Impulse* Response h[n].

(hint: $\delta[n] = u[n] - u[n-1]$)

4. Fourier Series

A sampler is a system which is very often used in Analog to Digital Conversions.

An ideal sampling process can be represented as multiplying the signal x(t) by a sampling impulse train $\Delta(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$. (See figure below.) The output of the sampling system can be written as $y(t) = x(t) \sum_{n=-\infty}^{+\infty} \delta(t - nT)$.

- (a) Is this system Linear and Time Invariant?
 - i. Input $\alpha x(t)$, output is $\alpha x(t) \sum_{n=-\infty}^{+\infty} \delta(t-nT) = \alpha y(t)$.
 - ii. Input $x_1(t) + x_2(t)$, output is $(x_1(t) + x_2(t)) \sum_{n=-\infty}^{+\infty} \delta(t nT) = y_1(t) + y_2(t)$, thus the system is linear.
 - iii. If delay the input x(t) by $0 \le s \le T$, then the sampled point will be totally different, and cannot be represented by delayed y(t). Thus the system is *NOT Time Invariant*.

Th	ne system is <i>Linear</i>	True	False
Th	ne system is <i>Time Invariant</i>	True	False

(b) Find the Fourier Series of the sampling impulse train $\Delta(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$.

$$a_{k} = \frac{1}{T} \int_{t=-\frac{T}{2}}^{\frac{T}{2}} \delta(t) e^{-j\frac{2\pi kt}{T}} dt$$
$$a_{k} = \frac{1}{T} \int_{t=-\frac{T}{2}}^{\frac{T}{2}} \delta(t) e^{-j\frac{2\pi kt}{T}} dt$$
$$a_{k} = \frac{1}{T} \int_{t=-\frac{T}{2}}^{\frac{T}{2}} \delta(t) dt$$
$$a_{k} = \frac{1}{T}$$

 $a_k = \frac{1}{T}$

(c) Find the Fourier Series b_k of a shifted and scaled Δ signal:

$$\Delta_2(t) = \Delta(\frac{T}{4} - t)$$

To get $\Delta_2(t)$ there are two steps: 1. flip $\Delta(t)$ get $\Delta_1(t)$ then the Fourier Series of $\Delta_1(t)$: $c_k = a_{-k}$. 2. Shift $\Delta_1(t)$ to the right by $\frac{T}{4}$ get $\Delta_2(t)$ then the Fourier Series of $\Delta_2(t)$: $b_k = c_k e^{-j\frac{2\pi k(T/4)}{T}} = c_k e^{-j\frac{k\pi}{2}} = a_{-k} e^{-j\frac{k\pi}{2}} = \frac{1}{T} e^{-j\frac{k\pi}{2}}$

$$b_k = \frac{1}{T} e^{-j\frac{k\pi}{2}}$$