Midterm Exam 1

NAME:

You have 2 hours for 4 questions.

- Show enough (neat) work in the clear spaces on this exam to convince us that you derived, not guessed, your answers.
- Put your final answers in the boxes at the bottom of the page.

Closed notes, closed book, 1 letter sized sheet allowed.

A LINEAR system is shown below. Suppose there are three test signals $(x_1[n], x_2[n], x_3[n]),$ for which the system outputs are $y_1[n]$, $y_2[n]$, $y_3[n]$, respectively.

1. If the output of the system $(y_4[n])$ when $x_4[n]$ is the input as shown below, find the input signal $x_4[n]$ as a linear combination of $x_1[n]$, $x_2[n]$, and $x_3[n]$. Also, plot $x_4[n]$.

Solution:

 $y_4[n] = -y_1[n] - y_2[n] + y_3[n]$. Therefore, $x_4[n] = -x_1[n] - x_2[n] + x_3[n]$.

2. What are the outputs of the system when the inputs are $\delta[n-1]$ and $\delta[n-2]$, respectively? Also, plot the two outputs seperately.

Solution:

$$
\delta[n-1] = x_2[n] - x_1[n] - x_3[n]
$$

therefore, the output is

$$
y_2[n] - y_1[n] - y_3[n]
$$

$$
\delta[n-2] = x_2[n] - x_1[n]
$$

therefore, the output is

 $y_2[n] - y_1[n]$

3. Based on what you have found from the last question, do you think this system is LTI? Why? Please explain your reason in detail.

Solution:

NO. Because when the input signal $\delta[n-1]$ gets delayed by 1 to $\delta[n-2]$, the output is not the output of input $\delta[n-1]$ delayed by 1.

Determine the Linearity and Time Invariance of the following systems with the given input $x(t)$ and output $y(t)$ relationship.

1. $y(t) = (t-1)^2x(t-4);$

Solution:

Linearity:

Suppose we have two signals $x_1(t)$ and $x_2(t)$ with corresponding outputs $y_1(t) = (t 1)^2x_1(t-4)$ and $y_2(t) = (t-1)^2x_2(t-4)$, respectively. If we input $x(t) = ax_1(t) + bx_2(t)$ into the system, the output is

$$
y(t) = (t - 1)^2 \{ax_1(t - 4) + bx_2(t - 4)\}
$$

= $a(t - 1)^2 x_1(t - 4) + b(t - 1)^2 x_2(t - 4)$
= $ay_1(t) + by_2(t)$

Therefore, the system is linear.

Time Invariance:

Suppose we have a delayed signal $x_d(t) = x(t - T)$. The corresponding output of the system is,

$$
y_d(t) = (t-1)^2 x_d(t-4)
$$

= $(t-1)^2 x(t-4-T)$

On the tneother hand, the delayed output is,

$$
y(t-T) = (t - T - 1)^{2}x(t - T - 4) \n\neq y_{d}(t)
$$

Therefore, the system is Time Variant.

2. $y(t) = x(t)^2 + 6x(t-1) + 5x(t-2);$

Solution:

Linearity:

Suppose we have two signals $x_1(t)$ and $x_2(t)$ with corresponding outputs $y_1(t) = x_1(t)^2 +$ $6x_1(t-1) + 5x_1(t-2)$ and $y_2(t) = x_2(t)^2 + 6x_2(t-1) + 5x_2(t-2)$, respectively. If we input $x(t) = ax_1(t) + bx_2(t)$ into the system, the output is

$$
y(t) = (ax_1(t) + bx_2(t))^2 + 6(ax_1(t-1) + bx_2(t-1)) + 5(ax_1(t-2) + bx_2(t-2))
$$

\n
$$
\neq a(x_1(t)^2 + 6x_1(t-1) + 5x_1(t-2)) + b(x_1(t)^2 + 6x_1(t-1) + 5x_1(t-2))
$$

\n
$$
= ay_1(t) + by_2(t)
$$

Therefore, the system is non-linear.

Time Invariance:

Suppose we have a delayed signal $x_d(t) = x(t - T)$. The corresponding output of the system is,

$$
y_d(t) = x_d(t)^2 + 6x_d(t-1) + 5x_d(t-2)
$$

= $x(t-T)^2 + 6x(t-T-1) + 5x(t-T-2)$ (1)

On the other hand, the delayed output is,

$$
y(t-T) = x(t-T)^2 + 6x(t-T-1) + 5x(t-T-2);
$$

= $y_d(t)$ (2)

Therefore, the system is Time Invariant.

3. $y(t) = real \{x(t-1)\};$

Solution:

 $y(t) = \frac{x(t-1) + x^*(t-1)}{2}$ 2

Linearity:

Suppose we have two signal $x_1(t)$ and $x_2(t)$ with corresponding outputs $y_1(t) = \frac{x_1(t-1) + x_1^*(t-1)}{2}$ 2 and $y_2(t) = \frac{x_2(t-1) + x_2^*(t-1)}{2}$ $\frac{2+x_2(t-1)}{2}$, respectively. If we input $x(t) = ax_1(t) + bx_2(t)$ into the system, the output is

$$
y(t) = \frac{ax_1(t-1) + bx_2(t-1) + a^*x_1^*(t-1) + b^*x_2^*(t-1)}{2}
$$

\n
$$
\neq a \frac{x_1(t-1) + x_1^*(t-1)}{2} + b \frac{x_2(t-1) + x_2^*(t-1)}{2}
$$

\n
$$
= ay_1(t) + by_2(t)
$$
\n(3)

Therefore, the system is non-linear because the scaling factor is not necessary to be real.

Time Invariance:

Suppose we have a delayed signal $x_d(t) = x(t - T)$. The corresponding output of the system is,

$$
y_d(t) = \frac{x_d(t-1) + x_d^*(t-1)}{2}
$$

=
$$
\frac{x(t-1-T) + x_d^*(t-1-T)}{2}
$$

=
$$
\frac{x(t-T-1) + x^*(t-T-1)}{2}
$$

=
$$
y(t-T)
$$

Therefore, the system is Time Invariant.

4. $y(t) = \int_{-t}^{t} x(\tau - 2) d\tau;$

Solution:

Linearity:

Suppose we have two signal $x_1(t)$ and $x_2(t)$ which have output $y_1(t) = \int_{-t}^{t} x_1(\tau - 2) d\tau$ and $y_2(t) = \int_{-t}^{t} x_2(\tau - 2)d\tau$ respectively. If we input $x(t) = ax_1(t) + bx_2(t)$ into the system, the output is

$$
y(t) = \int_{-t}^{t} ax_1(\tau - 2) + bx_2(\tau - 2)d\tau
$$

= $a \int_{-t}^{t} x_1(\tau - 2)d\tau + b \int_{-t}^{t} x_2(\tau - 2)d\tau$
= $ay_1(t) + by_2(t)$

Thus the system is linear.

Time Invariance:

Suppose we have a delayed signal $x_d(t) = x(t - T)$. It is input to the sytem:

$$
y_d(t) = \int_{-t}^{t} x_d(\tau - 2)d\tau
$$

$$
= \int_{-t}^{t} x(\tau - 2 - T)d\tau
$$

$$
= \int_{-t-2-T}^{t-2-T} x(\tau)d\tau
$$

On another hand, the delayed output :

$$
y(t-T) = \int_{-t+T}^{t-T} x(\tau - 2) d\tau
$$

$$
= \int_{-t+T-2}^{t-T-2} x(\tau) d\tau
$$

$$
\neq y_d(t)
$$

Thus the system is Time Variant.

1. Let $x(t)$, $y(t)$, and $h(t)$ be the input, output, and impulse response functions of a system, respectively. If the input-output relationship of that system is described by the convolution integral, i.e.

$$
y(t) = \int_{-\infty}^{\infty} h(t - \tau) x(\tau) d\tau,
$$

prove that the system is linear and time-invariant.

Solution:

$$
F[ax_1(t) + bx_2(t)] = \int_{-\infty}^{\infty} h(t-\tau)[ax_1(\tau) + bx_2(\tau)]d\tau
$$

= $a \int_{-\infty}^{\infty} h(t-\tau)x_1(\tau)d\tau + b \int_{-\infty}^{\infty} h(t-\tau)x_2(\tau)d\tau$
= $aF[x_1(t)] + bF[x_2(t)]$

Therefore, this system is linear.

Delay the input:

$$
F[x(t-T)] = \int_{-\infty}^{\infty} h(t-\tau)x(\tau-T)d\tau, \text{ Let } \sigma = \tau - T
$$

$$
= \int_{-\infty}^{\infty} h(t-\sigma-T)x(\sigma)d\sigma
$$

Delay the output:

$$
y(t-T) = \int_{-\infty}^{\infty} h(t - T - \tau)x(\tau)d\tau
$$

Therefore, this system is time-invariant.

2. If the above system is also causal, prove that

$$
y(t) = \int_{-\infty}^{t} h(t - \tau)x(\tau)d\tau.
$$

Solution: If the system is causal, $h(t) = h(t)u(t)$. Therefore, we have

$$
y(t) = \int_{-\infty}^{\infty} h(t - \tau)u(t - \tau)x(\tau)d\tau
$$

$$
= \int_{-\infty}^{t} h(t - \tau)x(\tau)d\tau
$$

3. Given a linear and time-invariant (LTI) system, if the input $x(t) = u(t-2)$ is applied to that system, we obtain $y(t) = \cosh(t-2)u(t-2)$ as the output. Determine the impulse response function $h(t)$ of that system. Then, using the $h(t)$ you have determined, write down the input-output relationship of the system.

Reminder: $\cosh(t) = \frac{1}{2} [e^t + e^{-t}]$

Solution: Since the system is *time-invariant*, the input $x(t) = u(t)$ results in the output $y(t) = \cosh(t)u(t)$.

Moreover, if $\delta(t) = du(t)/dt$ is applied as an input, we obtain impulse response function $h(t)$ as the output. Therefore, we have

$$
h(t) = \frac{dy(t)}{dt} = [\cosh(t)u(t)]' = \cosh(t)'u(t) + \cosh(t)u(t)'
$$

= $\sinh(t)u(t) + \cosh(t)\delta(t) = \sinh(t)u(t) + \cosh(0)\delta(t)$
= $\sinh(t)u(t) + \delta(t)$

Therefore,

$$
y(t) = \int_{-\infty}^{\infty} [\sinh(t-\tau)u(t-\tau) + \delta(t-\tau)]x(\tau)d\tau
$$

$$
= x(t) + \int_{-\infty}^{\infty} [\sinh(t-\tau)u(t-\tau)]x(\tau)d\tau
$$

4. Is this system BIBO stable? Is it causal? Is it memoryless? Please explain your reason! **Solution:** Because $\int_{-\infty}^{\infty} |h(t)|dt = \int_{-\infty}^{\infty} |\sinh(t)u(t)|dt = \infty$, this system is not BIBO stable.

This system is *causal* because $h(t)u(t) = 0$, for $t < 0$.

This is not a memoryless system because $y(t)$ depends on the past input from the integral.

Find the convolution of the two signals shown below graphically.

Plot your answer here:

Solution:

