Midterm Exam 1

NAME:

You have 2 hours for 4 questions.

- Show enough (neat) work in the clear spaces on this exam to convince us that you derived, not guessed, your answers.
- Put your final answers in the boxes at the bottom of the page.

Closed notes, closed book, 1 letter sized sheet allowed.

Problem	Score
1	
2	
3	
4	
Total	

Problem 1.

A LINEAR system is shown below. Suppose there are three test signals $(x_1[n], x_2[n], x_3[n])$, for which the system outputs are $y_1[n], y_2[n], y_3[n]$, respectively.

1. If the output of the system $(y_4[n])$ when $x_4[n]$ is the input as shown below, find the input signal $x_4[n]$ as a linear combination of $x_1[n]$, $x_2[n]$, and $x_3[n]$. Also, plot $x_4[n]$.

Solution:

 $y_4[n] = -y_1[n] - y_2[n] + y_3[n]$. Therefore, $x_4[n] = -x_1[n] - x_2[n] + x_3[n]$.

2. What are the outputs of the system when the inputs are $\delta[n-1]$ and $\delta[n-2]$, respectively? Also, plot the two outputs separately.

Solution:

$$\delta[n-1] = x_2[n] - x_1[n] - x_3[n]$$

therefore, the output is

$$y_2[n] - y_1[n] - y_3[n]$$

$$\delta[n-2] = x_2[n] - x_1[n]$$

therefore, the output is

$$y_2[n] - y_1[n]$$

3. Based on what you have found from the last question, do you think this system is LTI? Why? Please explain your reason in detail.

Solution:

NO. Because when the input signal $\delta[n-1]$ gets delayed by 1 to $\delta[n-2]$, the output is not the output of input $\delta[n-1]$ delayed by 1.

Problem 2.

Determine the Linearity and Time Invariance of the following systems with the given input x(t) and output y(t) relationship.

1. $y(t) = (t-1)^2 x(t-4);$

Solution:

Linearity:

Suppose we have two signals $x_1(t)$ and $x_2(t)$ with corresponding outputs $y_1(t) = (t - 1)^2 x_1(t-4)$ and $y_2(t) = (t-1)^2 x_2(t-4)$, respectively. If we input $x(t) = ax_1(t) + bx_2(t)$ into the system, the output is

$$y(t) = (t-1)^{2} \{ ax_{1}(t-4) + bx_{2}(t-4) \}$$

= $a(t-1)^{2}x_{1}(t-4) + b(t-1)^{2}x_{2}(t-4)$
= $ay_{1}(t) + by_{2}(t)$

Therefore, the system is linear.

Time Invariance:

Suppose we have a delayed signal $x_d(t) = x(t - T)$. The corresponding output of the system is,

$$y_d(t) = (t-1)^2 x_d(t-4) = (t-1)^2 x(t-4-T)$$

On the tneother hand, the delayed output is,

$$y(t-T) = (t-T-1)^2 x(t-T-4)$$

$$\neq y_d(t)$$

Therefore, the system is Time Variant.

The system is Linear	True	False
The system is Time Invariant	True	False

2. $y(t) = x(t)^2 + 6x(t-1) + 5x(t-2);$

Solution:

Linearity:

Suppose we have two signals $x_1(t)$ and $x_2(t)$ with corresponding outputs $y_1(t) = x_1(t)^2 + 6x_1(t-1) + 5x_1(t-2)$ and $y_2(t) = x_2(t)^2 + 6x_2(t-1) + 5x_2(t-2)$, respectively. If we input $x(t) = ax_1(t) + bx_2(t)$ into the system, the output is

$$y(t) = (ax_1(t) + bx_2(t))^2 + 6(ax_1(t-1) + bx_2(t-1)) + 5(ax_1(t-2) + bx_2(t-2))$$

$$\neq a(x_1(t)^2 + 6x_1(t-1) + 5x_1(t-2)) + b(x_1(t)^2 + 6x_1(t-1) + 5x_1(t-2))$$

$$= ay_1(t) + by_2(t)$$

Therefore, the system is non-linear.

Time Invariance:

Suppose we have a delayed signal $x_d(t) = x(t - T)$. The corresponding output of the system is,

$$y_d(t) = x_d(t)^2 + 6x_d(t-1) + 5x_d(t-2)$$

= $x(t-T)^2 + 6x(t-T-1) + 5x(t-T-2)$ (1)

On the other hand, the delayed output is,

$$y(t-T) = x(t-T)^{2} + 6x(t-T-1) + 5x(t-T-2);$$

= $y_{d}(t)$ (2)

Therefore, the system is Time Invariant.

The system is Linear	True	False
The system is Time Invariant	True	False

3. $y(t) = real \{x(t-1)\};$

Solution:

 $y(t) = \frac{x(t-1) + x^*(t-1)}{2}$

Linearity:

Suppose we have two signal $x_1(t)$ and $x_2(t)$ with corresponding outputs $y_1(t) = \frac{x_1(t-1)+x_1^*(t-1)}{2}$ and $y_2(t) = \frac{x_2(t-1)+x_2^*(t-1)}{2}$, respectively. If we input $x(t) = ax_1(t) + bx_2(t)$ into the system, the output is

$$y(t) = \frac{ax_1(t-1) + bx_2(t-1) + a^*x_1^*(t-1) + b^*x_2^*(t-1)}{2}$$

$$\neq a\frac{x_1(t-1) + x_1^*(t-1)}{2} + b\frac{x_2(t-1) + x_2^*(t-1)}{2}$$

$$= ay_1(t) + by_2(t)$$
(3)

Therefore, the system is non-linear because the scaling factor is not necessary to be real.

Time Invariance:

Suppose we have a delayed signal $x_d(t) = x(t - T)$. The corresponding output of the system is,

$$y_d(t) = \frac{x_d(t-1) + x_d^*(t-1)}{2}$$

= $\frac{x(t-1-T) + x_d^*(t-1-T)}{2}$
= $\frac{x(t-T-1) + x^*(t-T-1)}{2}$
= $y(t-T)$

Therefore, the system is Time Invariant.

The system is Linear	True	False
The system is Time Invariant	True	False

4. $y(t) = \int_{-t}^{t} x(\tau - 2) d\tau;$

Solution:

Linearity:

Suppose we have two signal $x_1(t)$ and $x_2(t)$ which have output $y_1(t) = \int_{-t}^{t} x_1(\tau - 2)d\tau$ and $y_2(t) = \int_{-t}^{t} x_2(\tau - 2)d\tau$ respectively. If we input $x(t) = ax_1(t) + bx_2(t)$ into the system, the output is

$$y(t) = \int_{-t}^{t} ax_1(\tau - 2) + bx_2(\tau - 2)d\tau$$

= $a \int_{-t}^{t} x_1(\tau - 2)d\tau + b \int_{-t}^{t} x_2(\tau - 2)d\tau$
= $ay_1(t) + by_2(t)$

Thus the system is linear.

Time Invariance:

Suppose we have a delayed signal $x_d(t) = x(t - T)$. It is input to the system:

$$y_d(t) = \int_{-t}^t x_d(\tau - 2)d\tau$$
$$= \int_{-t}^t x(\tau - 2 - T)d\tau$$
$$= \int_{-t-2-T}^{t-2-T} x(\tau)d\tau$$

On another hand, the delayed output :

$$y(t-T) = \int_{-t+T}^{t-T} x(\tau-2)d\tau$$
$$= \int_{-t+T-2}^{t-T-2} x(\tau)d\tau$$
$$\neq y_d(t)$$

Thus the system is Time Variant.

The system is Linear	True	False
The system is Time Invariant	True	False

1. Let x(t), y(t), and h(t) be the input, output, and impulse response functions of a system, respectively. If the input-output relationship of that system is described by the *convolution integral*, i.e.

$$y(t) = \int_{-\infty}^{\infty} h(t-\tau)x(\tau)d\tau,$$

prove that the system is *linear* and *time-invariant*.

Solution:

$$F[ax_{1}(t) + bx_{2}(t)] = \int_{-\infty}^{\infty} h(t-\tau)[ax_{1}(\tau) + bx_{2}(\tau)]d\tau$$

= $a \int_{-\infty}^{\infty} h(t-\tau)x_{1}(\tau)d\tau + b \int_{-\infty}^{\infty} h(t-\tau)x_{2}(\tau)d\tau$
= $aF[x_{1}(t)] + bF[x_{2}(t)]$

Therefore, this system is *linear*.

Delay the input:

$$F[x(t-T)] = \int_{-\infty}^{\infty} h(t-\tau)x(\tau-T)d\tau, \quad \text{Let } \sigma = \tau - T$$
$$= \int_{-\infty}^{\infty} h(t-\sigma-T)x(\sigma)d\sigma$$

Delay the output:

$$y(t-T) = \int_{-\infty}^{\infty} h(t-T-\tau)x(\tau)d\tau$$

Therefore, this system is *time-invariant*.

2. If the above system is also *causal*, prove that

$$y(t) = \int_{-\infty}^{t} h(t-\tau)x(\tau)d\tau.$$

Solution: If the system is causal, h(t) = h(t)u(t). Therefore, we have

$$y(t) = \int_{-\infty}^{\infty} h(t-\tau)u(t-\tau)x(\tau)d\tau$$
$$= \int_{-\infty}^{t} h(t-\tau)x(\tau)d\tau$$

3. Given a *linear* and *time-invariant* (LTI) system, if the input x(t) = u(t-2) is applied to that system, we obtain $y(t) = \cosh(t-2)u(t-2)$ as the output. Determine the impulse response function h(t) of that system. Then, using the h(t) you have determined, write down the input-output relationship of the system.

Reminder: $\cosh(t) = \frac{1}{2}[e^t + e^{-t}]$

Solution: Since the system is *time-invariant*, the input x(t) = u(t) results in the output $y(t) = \cosh(t)u(t)$.

Moreover, if $\delta(t) = du(t)/dt$ is applied as an input, we obtain impulse response function h(t) as the output. Therefore, we have

$$h(t) = \frac{dy(t)}{dt} = [\cosh(t)u(t)]' = \cosh(t)'u(t) + \cosh(t)u(t)'$$

= $\sinh(t)u(t) + \cosh(t)\delta(t) = \sinh(t)u(t) + \cosh(0)\delta(t)$
= $\sinh(t)u(t) + \delta(t)$

Therefore,

$$y(t) = \int_{-\infty}^{\infty} [\sinh(t-\tau)u(t-\tau) + \delta(t-\tau)]x(\tau)d\tau$$
$$= x(t) + \int_{-\infty}^{\infty} [\sinh(t-\tau)u(t-\tau)]x(\tau)d\tau$$

4. Is this system *BIBO stable*? Is it *causal*? Is it *memoryless*? Please explain your reason! Solution: Because $\int_{-\infty}^{\infty} |h(t)| dt = \int_{-\infty}^{\infty} |\sinh(t)u(t)| dt = \infty$, this system is not *BIBO stable*.

This system is causal because h(t)u(t) = 0, for t < 0.

This is not a memoryless system because y(t) depends on the past input from the integral.

The system is BIBO stable	True	False
The system is Causal	True	False
The system is Memoryless	True	False

$Problem \ 4.$

Find the convolution of the two signals shown below **graphically**.

Plot your answer here:

Solution:

