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1. f(t) is a periodic signal with period T0 = 2 s, where one period of the signal is defined as e−|t|

for −1 ≤ t ≤ 1 s, as shown below.
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(a) Find its Fourier series coefficients ck.

(b) If we plot, using MATLAB, the truncated Fourier series fN (t) =
∑N

k=−N cke
j 2π
T0
kt, will Gibbs

phenomenon occur for this signal? Explain your answer.

Solutions:

(a) The Fourier series coefficients of f(t) are given by:

ck =
1

T0

∫ 1

−1
f(t)e−jω0ktdt

=
1

2

(∫ 0

−1
ete−jπktdt+

∫ 1

0
e−te−jπktdt

)
=

1

2

(∫ 0

−1
e(−jπk+1)tdt+

∫ 1

0
e(−jπk−1)tdt

)
=

1

2

(∫ 0

−1
e(−jπk+1)tdt+

∫ 1

0
e(−jπk−1)tdt

)
=

1

2

(
1− e(jπk−1)

−jπk + 1
+
e(−jπk−1) − 1

−jπk − 1

)
=
(
1− e−1(−1)k

) 1

(1 + π2k2)

(b) The function f(t) is continuous, there are no discontinuity points, therefore there will be no
ripples when plotting fN (t). The Gibbs phenomenon happened when we had discontinues
function.
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2. Suppose we have a periodic signal x(t), with period of T0 = 4, and let ak denote the Fourier
series coefficients of x(t). Suppose from x(t), we construct a new signal, y(t), that has the same
period of x(t). The Fourier series coefficients of y(t) are given by: bk = (−1)kak. Express y(t) in
terms of x(t) and sketch y(t).

Solutions:

y(t) =
∞∑
−∞

bke
jω0kt =

∞∑
−∞

bke
j π
2
kt =

∞∑
−∞

(−1)kakej
π
2
kt =

∞∑
−∞

ejπkake
j π
2
kt =

∞∑
−∞

ake
j π
2
k(t+2)

Therefore,
y(t) = x(t+ 2)
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3. Find the value of A in x(t) = Aδ(t)− sinc(t) such that x(t) ∗ x(t) = x(t)

Solutions:

x(t) ∗ x(t) = (Aδ(t)− sinc(t)) ∗ (Aδ(t)− sinc(t))

= A2δ(t)− 2Asinc(t) + sinc(t) ∗ sinc(t)

Now,
sinc(t) ∗ sinc(t)→ rect(ω/2π)rect(ω/2π) = rect(ω/2π)

Therefore,
sinc(t) ∗ sinc(t) = sinc(t)

Now,

x(t) ∗ x(t) = A2δ(t)− 2Asinc(t) + sinc(t)

For x(t) ∗ x(t) = x(t), A should be 1.
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4. Consider an LTI system with impulse response h(t) = e−tδ(t)+ u(t− 1). We give this system the
following input:

Let y(t) denote its corresponding output. Find y(t) at times t = 3
2 , t = +∞.

Solutions:

We can first simplify h(t) to the following: h(t) = δ(t) + u(t− 1). Therefore,

y(t) = x(t) ∗ h(t) = x(t) ∗ (δ(t) + u(t− 1))

= x(t) +

∫ ∞
−∞

x(τ)u(t− 1− τ)dτ

= x(t) +

∫ t−1

−∞
x(τ)dτ

Therefore,

y(3/2) = x(3/2) +

∫ 0.5

−∞
x(τ)dτ = −1 + 1− 2 ∗ 0.5 = −1

y(t)t→∞ = 0 +

∫ ∞
−∞

x(τ)dτ = 1− 2− 2 ∗ 1/2 = −2
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5. Show if each of the following systems is LTI. In the case where the system is LTI, determine its
impulse response.

(a) y(t) =
∫ t
−∞ λ

−(t−τ)x(τ)dτ , where λ ≥ 1

Solutions:
Suppose that for inputs x1(t) and x2(t), we have respectively the corresponding outputs
y1(t) and y2(t) outputs. Now, let x(t) = ax1(t) + bx2(t), we then have the following:

y(t) =

∫ t

−∞
λ−(t−τ)x(τ)dτ

=

∫ t

−∞
λ−(t−τ)(ax1(τ) + bx2(τ))dτ

=

∫ t

−∞
(aλ−(t−τ)x1(τ) + bλ−(t−τ)x2(τ))dτ

=

∫ t

−∞
aλ−(t−τ)x1(τ)dτ + bλ−(t−τ)x2(τ)dτ

=

∫ t

−∞
aλ−(t−τ)x1(τ)dτ +

∫ t

−∞
bλ−(t−τ)x2(τ)dτ

= ay1(t) + by2(t)

Therefore, the system is linear.
Time-invariance:
If we delay the input for t0:

yt0(t) =

∫ t

−∞
λ−(t−τ)x(τ − t0)dτ, let τ ′ = τ − t0

=

∫ t−t0

−∞
λ−(t−τ

′−t0)x(τ ′)dτ ′

= y(t− t0)

Therefore, the system is time-invariant. Now determining the impulse response:

h(t) = y(t)|x(t)=δ(t) =
∫ t

−∞
λ−(t−τ)δ(τ)dτ =

∫ t

−∞
λ−tδ(τ)dτ = λ−t

∫ t

−∞
δ(τ)dτ = λ−tu(t)

(b) y(t) =


x(t), |x(t)| ≤ 1

1, x(t) > 1

−1, x(t) < −1

Solutions:

The system is not linear, we can check the homogeneity property: Let x(t) = 0.5, then y(t) =
0.5. Now if we give the system the following input 3x(t) = 1.5, the output is then 1 6= 3y(t).
Therefore, the system is not linear.

The system is time-invariant. This is because if we delay the input by t0: xt0(t) = x(t− t0), the
corresponding output:

yt0(t) =


xt0(t), |xt0(t)| ≤ 1

1, xt0(t) > 1

−1, xt0(t) < −1
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Therefore,

yt0(t) =


x(t− t0), |x(t− t0)| ≤ 1

1, x(t− t0) > 1

−1, x(t− t0) < −1

Since yt0(t) = y(t− t0), the system is time-invariant.

6. Evaluate the following integral:∫∞
−∞ sinc(2τ + 1)dτ

Solutions:

Let x(t) = sinc(2t+ 1). Then using the definition of Fourier transform, we have:∫ ∞
−∞

x(τ)dτ = X(jω)|ω=0

Now,

X(jω) =
1

2
rect(ω/4π)ejω/2

Therefore, X(0) = 1
2 .

7. Consider the following real signal x(t):

Let X(jω) denote its Fourier transform. Evaluate the following:

(a)
∫ +∞
−∞ X(jω)e−jωdω

Solutions:

∫ +∞
−∞ X(jω)e−jωdω = 2πx(t)t=−1 = 0

(b)
∫ +∞
−∞ X(j(ω − 1))e2jωdω

Solutions:

∫ +∞
−∞ X(j(ω−1))e2jωdω =

∫ +∞
−∞ X(jω′)e2j(ω

′+1)dω′ = ej2
∫ +∞
−∞ X(jω′)e2jω

′
dω′ = 2πej2x(t)t=2 =

6πe2j
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(c)
∫ +∞
−∞ Re{X(jω)}e−jωdω

Solutions:
Since x(t) is real, Re{X(jω)} = Xe(jω).Therefore,

∫ +∞

−∞
Re{X(jω)}e−jωdω =

∫ +∞

−∞
Xe(jω)e

−jωdω = 2πxe(t)|t=−1 = 2π(x(1)+x(−1))/2 = 2π

8. Use Parseval’s theorem to prove the following:

Power of

( ∞∑
k=0

Ak cos(kω0t+ θ)

)
= |A0 cos(θ)|2 +

∞∑
k=1

1

2
|Ak|2

Solutions:

∞∑
k=0

Ak cos(kω0t+ θ) = A0 cos(θ) +
∞∑
k=1

Ak
1

2

(
ej(kω0t+θ) + e−j(kω0t+θ)

)
= A0 cos(θ) +

∞∑
k=1

Ak
2
ejθejkω0t +

∞∑
k=1

Ak
2
e−jθe−jkω0t

Therefore, the power is as follow:

|ck|2 = |A0 cos(θ)|2 +
∞∑
k=1

|Ak|2

4
+

∞∑
k=1

|Ak|2

4
= |A0 cos(θ)|2 +

∞∑
k=1

|Ak|2

2
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