ECE102, Fall 2019 Midterm Solutions

Department of Electrical and Computer Engineering Prof. J.C. Kao University of California, Los Angeles TAs: W. Feng, J. Lee & S. Wu

UCLA True Bruin academic integrity principles apply. Open: Two cheat sheets allowed. Closed: Book, computer, internet. 2:00-3:50pm. Wednesday, 13 Nov 2019.

State your assumptions and reasoning. No credit without reasoning. Show all work on these pages.

Name:

Signature:

ID#:

Problem 1 $____\/$ 35 Problem 2 \sim / 20 Problem 3 $\frac{1}{20}$ Problem 4 $\frac{1}{25}$ $BONUS$ / 6 bonus points

Total $\frac{1}{\sqrt{100}}$ points + 6 bonus points

1. Signal and System Properties + Convolution (35 points).

- (a) (15 points) Determine if each of the following statements is true or false. Briefly explain your answer to receive full credit.
	- i. (5 points) $x(t) = \cos(\sqrt{3}t) + \sin(-3t)$ is a periodic signal.

Solution: False.

 $\cos(\sqrt{3}t)$ has a period $T_1 = \frac{2\pi}{\sqrt{3}}$ $\sin(-3t)$ has a period $T_2 = \frac{2\pi}{|-3|} = \frac{2\pi}{3}$ Then the ratio *T*1 *T*2 $=\frac{3}{\sqrt{3}} = \sqrt{3}$

is not rational. In other words, we couldn't find integers *m* and *n* such that $T = mT_1 = nT_2$. Therefore, $x(t)$ is not periodic.

ii. (5 points) A signal can be neither energy signal nor power signal.

Solution: True. **Example 1:** $x(t) = e^t u(t)$ has infinite energy and infinite power. **Example 2:** $x(t) = tan(t)$ is a periodic signal so it is not energy signal. It also has infinite power.

iii. (5 points) Let $f(t) * g(t)$ denote the convolution of two signals, $f(t)$ and $g(t)$. Then,

$$
f(t)[\delta(t) * g(t)] = [f(t)\delta(t)] * g(t)
$$

Solution: False. The left hand side:

$$
f(t)[\delta(t) * g(t)] = f(t)g(t)
$$

While the right hand side is

$$
[f(t)\delta(t)] * g(t) = [f(0)\delta(t)] * g(t) = f(0)g(t)
$$

(b) (10 points) Determine if the following system is an LTI system. Explain your answer.

$$
y(t) = \frac{x(t-1)}{t} + x(t-2)
$$
 (1)

Solution:

Linearity: Suppose we have two input signals $x_1(t)$, $x_2(t)$ and output signals $y_1(t)$, $y_2(t)$ respectively. If we consider an input signal $x_3(t) = ax_1(t) + bx_2(t)$, then we have the corresponding output signal:

$$
y_3(t) = \frac{ax_1(t-1) + bx_2(t-1)}{t} + ax_1(t-2) + bx_2(t-2)
$$

= $\left(\frac{ax_1(t-1)}{t} + ax_1(t-2)\right) + \left(\frac{bx_2(t-1)}{t} + bx_2(t-2)\right)$
= $a\left(\frac{x_1(t-1)}{t} + x_1(t-2)\right) + b\left(\frac{x_2(t-1)}{t} + x_2(t-2)\right)$
= $ay_1(t) + by_2(t)$

Hence, the system is linear.

Time-invariant: Suppose we delay the input signal by t_0 , i.e. $x_{t_0}(t) = x(t - t_0)$, the output is:

$$
y_{t_0}(t) = \frac{x(t - 1 - t_0)}{t} + x(t - 2 - t_0)
$$

If we delay the output signal by same amount t_0 , we have:

$$
y(t - t_0) = \frac{x(t - 1 - t_0)}{t - t_0} + x(t - 2 - t_0)
$$

We can find that $y_{t_0}(t) \neq y(t - t_0)$. Hence, the system is not time-invariant.

(c) (10 points) For signals $f(t)$ and $g(t)$ plotted below, graphically compute the convolution signal $h(t) = f(t) * q(t)$. To receive partial credit, you may show $h(0)$, $h(1/4)$ and $h(5/8)$ in the graph when illustrating the convolution using the "flip and drag" technique.

Solution: The graphical convolution using "flip and drag" is illustrated below. We first flip $f(t)$, to get $f(t - \tau)$, which doesn't overlap with $g(\tau)$ until $t = 0$. From $t = 0$ to $t = 1/4$, the overlapped area increases linearly. As $f(t - \tau)$ shifts further right, it always overlaps the equivalent of one full lobe of $g(\tau)$. The overlapped area keeps constant at $1/4$ until $t = 2$, when the area starts to decrease linearly to zero, at $t = 2.5$

2. LTI Systems (20 points).

Consider the following LTI system *S*:

$$
x(t) \longrightarrow \qquad \qquad \begin{array}{c}\nS \\
LTI\n\end{array}\n\qquad y(t)
$$

Consider an input signal $x_1(t) = e^{-2t}u(t-2)$. It is given that

$$
x_1(t) \xrightarrow{S} y_1(t)
$$

\n
$$
\frac{dx_1(t)}{dt} \xrightarrow{S} -2y_1(t) + e^{-2t}u(t)
$$

(a) (4 points) Show that:

$$
\frac{dx_1(t)}{dt} = -2x_1(t) + e^{-2t}\delta(t-2)
$$

Solution: This is differentiating the input.

$$
\frac{dx_1(t)}{dt} = -2e^{-2t}u(t-2) + e^{-2t}\delta(t-2)
$$

$$
= -2x_1(t) + e^{-2t}\delta(t-2)
$$

(b) (10 points) Find the impulse response *h*(*t*) of *S*.

Hint: Since we have not provided *S*, we cannot straightforwardly input an impulse into the system and measure the output. One approach is to solve for $h(t)$ by writing the output of *S* in terms of a convolution when the input is $dx_1(t)/dt$, i.e.,

$$
\frac{\mathrm{d}x_1(t)}{\mathrm{d}t} * h(t)
$$

Solution:

Since the system is LTI, we have:

$$
-2x_1(t) + e^{-2t}\delta(t-2) \xrightarrow{S} -2y_1(t) + h(t) \star (e^{-2t}\delta(t-2))
$$

Given that

$$
\frac{dx_1(t)}{dt} \longrightarrow -2y_1(t) + e^{-2t}u(t)
$$

we have

$$
-2y_1(t) + h(t) \star (e^{-2t}\delta(t-2)) = -2y_1(t) + e^{-2t}u(t)
$$

$$
h(t) \star (e^{-2t}\delta(t-2)) = e^{-2t}u(t)
$$

The left hand side can be calculated by the convolution integral:

$$
\int_{-\infty}^{+\infty} e^{-2\tau} \delta(\tau - 2)h(t - \tau) d\tau = \int_{-\infty}^{+\infty} e^{-4} \delta(\tau - 2)h(t - 2) d\tau
$$

$$
= e^{-4}h(t - 2) \int_{-\infty}^{+\infty} \delta(\tau - 2) d\tau
$$

$$
= e^{-4}h(t - 2)
$$

Therefore, we have:

$$
e^{-4}h(t-2) = e^{-2t}u(t)
$$

$$
h(t-2) = e^{-2t+4}u(t)
$$

$$
h(t) = e^{-2t}u(t+2)
$$

(c) (6 points) Consider a new system, *S*, whose impulse response is $h(t) = e^{-3t}u(t+3)$. Find this system's output to the following input signal:

$$
x_2(t) = \cos\left(\frac{\pi}{4}t\right)\delta(t-1)
$$

Solution: Using the sampling property, we can simply $x_2(t)$ as:

$$
x_2(t) = \cos\left(\frac{\pi}{4}t\right)\delta(t-1) = \frac{\sqrt{2}}{2}\delta(t-1)
$$

Then we have

$$
y_2(t) = h(t) * x_2(t) = e^{-3t}u(t+3) * \frac{\sqrt{2}}{2}\delta(t-1) = \frac{\sqrt{2}}{2}e^{-3t+3}u(t+2)
$$

3. Fourier Series (20 points).

(a) (10 points) Let the Fourier Series coefficients of $f(t)$ be denoted f_k , and the Fourier Series coefficients of $g(t)$ denoted g_k . Let T_o be the period of $f(t)$. If $g(t) = f(a(t - b))$, where $a > 0$, show that

$$
g_k = e^{-j2\pi \frac{ab}{T_o}k} f_k.
$$

Solution: We begin with the Fourier Series of $f(t)$, and the substitute $a(t-b)$: for t

$$
f(t) = \sum_{k=-\infty}^{\infty} f_k e^{jk\omega_o t}
$$

$$
g(t) = f(a(t - b)) = \sum_{k=-\infty}^{\infty} f_k e^{jk\omega_o a(t - b)}
$$

$$
= \sum_{k=-\infty}^{\infty} f_k e^{jk\omega_o at} e^{-jk\omega_o ab}
$$

Let $\omega_g = a\omega_o$ be the angular frequency of $g(t)$. We also know that $\omega_o = \frac{2\pi}{T_o}$. Then we can rewrite the above expression as:

$$
g(t) = \sum_{k=-\infty}^{\infty} f_k e^{-jk\omega_o ab} e^{jk\omega_g t}
$$

$$
= \sum_{k=-\infty}^{\infty} g_k e^{jk\omega_g t},
$$

where

$$
g_k = e^{-j2\pi \frac{ab}{T_o}k} f_k.
$$

(b) (10 points) Let the Fourier Series coefficients of $x(t)$ and $y(t)$ be x_k and y_k respectively, with respective periods T_1 and T_2 . We define $f(t) = \alpha_1 x(t) + \alpha_2 y(t)$ with non-zero α_1, α_2 , with period $T_o = m_1 T_1 = m_2 T_2$. What are the Fourier Series Coefficients f_k in terms of x_k and y_k ?

Solution: Since $T_o = m_1 T_1$, $\omega_1 = m_1 \omega_o$. Then:

$$
x(t) = \sum_{k=-\infty}^{\infty} x_k e^{jk\omega_1 t}
$$

$$
= \sum_{k=-\infty}^{\infty} x_k e^{jkm_1\omega_0 t}
$$

We may introduce a change of variables $n = km_1$ so that we have:

$$
x(t) = \sum_{\substack{n = -\infty, \\ n = km_1}}^{\infty} x_{\frac{n}{m_1}} e^{jn\omega_0 t}
$$

Likewise, for $y(t)$, using $l = km_2$, we have:

$$
y(t) = \sum_{\substack{l = -\infty \\ l = km_2}}^{\infty} y_{\frac{l}{m_2}} e^{j l \omega_0 t}
$$

Then:

$$
f(t) = \alpha_1 x(t) + \alpha_2 y(t)
$$

\n
$$
= \alpha_1 \sum_{\substack{n = -\infty, \\ n = km_1}}^{\infty} x_{\frac{n}{m_1}} e^{jn\omega_0 t} + \alpha_2 \sum_{\substack{l = -\infty, \\ l = km_2}}^{\infty} y_{\frac{l}{m_2}} e^{jl\omega_0 t}
$$

\n
$$
= \sum_{\substack{n = -\infty, \\ n = km_1}}^{\infty} \alpha_1 x_{\frac{n}{m_1}} e^{jn\omega_0 t} + \sum_{\substack{l = -\infty, \\ l = km_2}}^{\infty} \alpha_2 y_{\frac{l}{m_2}} e^{jl\omega_0 t}
$$

\n
$$
= \sum_{k = -\infty}^{\infty} f_k e^{jk\omega_0 t}
$$

Therefore,

$$
f_k = \begin{cases} \alpha_1 x_{\frac{k}{m_1}} + \alpha_2 x_{\frac{k}{m_2}}, & k \text{ a multiple of } m_1 \text{ and } m_2 \\ \alpha_1 x_{\frac{k}{m_1}}, & k \text{ a multiple of } m_1 \text{ but not } m_2 \\ \alpha_2 x_{\frac{k}{m_2}}, & k \text{ a multiple of } m_2 \text{ but not } m_1 \\ 0, & \text{ else} \end{cases}
$$

4. Fourier Transform (25 points). Consider the signal

$$
x(t) = \text{sinc}(2t)
$$

and let the Fourier transform of $x(t)$ be denoted $X(j\omega)$. We are interested in calculating the area under the curve of $x(t)$.

(a) (10 points) Prove that the following relationship holds.

$$
\int_{-\infty}^{\infty} x(t)dt = X(j\omega)|_{\omega=0}
$$

Solution: The Fourier transform of $x(t)$ is:

$$
X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt
$$

Therefore, when $\omega = 0$,

$$
X(j\omega)|_{\omega=0} = \int_{-\infty}^{\infty} x(t)e^{-j\cdot 0 \cdot t}dt
$$

$$
= \int_{-\infty}^{\infty} x(t)dt
$$

(b) (5 points) Use the result of part (a) to calculate:

$$
\int_{-\infty}^{\infty} x(t)dt
$$

for $x(t) = \text{sinc}(2t)$.

Solution: From our FT table, we have that

$$
\text{sinc}(t) \iff \text{rect}(\omega/2\pi)
$$

Using the time scaling property,

$$
\text{sinc}(2t) \iff \frac{1}{2}\text{rect}(\omega/4\pi)
$$

Therefore, the area is equal to 1*/*2.

(c) (5 points) Consider the following system:

$$
y(t) = e^{-j\omega_0 t}x(t)
$$

Let $x(t) = \text{sinc}(2t)$ and consider only $\omega_0 > 0$. Are there any values of ω_0 for which

$$
\int_{-\infty}^{\infty} y(t)dt = 0
$$

and if so, what value(s) of ω_0 does this hold for?

Solution: Multiplication by a complex exponential in the time domain is shifting in the frequency domain by ω_0 . Since $\text{sinc}(2t) \iff \frac{1}{2} \text{rect}(\omega/4\pi)$, then $X(j\omega)$ takes on a value of $1/2$ between -2π and 2π but is zero everywhere else. The integral of $y(t)$ will be equal to zero when this rect is shifted such that it is zero at $\omega = 0$. This occurs for a shift of 2π or greater. Therefore this integral is zero whenever $\omega_0 > 2\pi$.

(d) (5 points) Consider the following system:

$$
y(t) = x(t) + \alpha \text{rect}(t)
$$

Let $x(t) = \text{sinc}(2t)$. Are there any values of α for which

$$
\int_{-\infty}^{\infty} y(t)dt = 0
$$

and if so, what value(s) of α does this hold for?

Solution: The Fourier Transform of $rect(t)$ is $sinc(\omega/2\pi)$, which is equal to 1 at $\omega = 0$. From part (b), the Fourier transform of $\text{sinc}(2t)$ is $\frac{1}{2}\text{rect}(\omega/4\pi)$, which is equal to $1/2$ at $\omega = 0$. Therefore, if $\alpha = -1/2$, then $Y(j\omega) = 0$ at $\omega = 0$.

Bonus (6 points) Suppose $x(t) = \cos(\omega_0 t)$ is an eigenfunction of an LTI system *S* for any ω_o , and *S* cannot be defined as $S[x(t)] = ax(t)$ for some constant *a*. Is the system *S* causal? Justify your answer.

Solution: We can write $x(t)$ as $x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_o t} = \frac{1}{2} e^{j\omega_o t} + \frac{1}{2} e^{-j\omega_o t}$. Then the output $y = S[x(t)]$ is:

$$
y(t) = \sum_{k=-\infty}^{\infty} H(jk\omega_o)c_k e^{jk\omega_o t}
$$

= $\frac{1}{2}H(j\omega_o)e^{j\omega_o t} + \frac{1}{2}H(-j\omega_o)e^{-j\omega_o t}$

In order for $y(t) = ax(t)$ to be satisfied, we need $H(j\omega_o) = H(-j\omega_o)$ to be true for all ω_o , and $H(j\omega)$ is even. This also implies that $h(t)$ is even as well. Since $h(t) \neq 0$, $h(t) \neq a\delta(t)$, and $E_h > 0$, then there exists a value of *t* for which $h(t) \neq 0$ and $h(-t) \neq 0$. Therefore, *S* is non-causal.