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Comments:

• If you have grading questions, please submit through Gradescope. Regrades should be sub-

mitted if you believe we applied the rubric mistakenly.

• The exam was longer than we intended. We will use this information to calibrate the length

and difficulty of the final.

• Given the length of the midterm, I will make the following offer: if you do better on the final

exam than the midterm, I will count the final exam score as your midterm score (i.e., your

final will count as 60% of your grade; with the HW being 40%).

• Please be reminded that the absolute grading scale may be relaxed. The median final grade

in this class will not be lower than a B+.

• Please don’t hesitate to contact Prof. Kao if you received a poor score and would like to talk

further, or have overall course grade questions.
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Problem 1 (19 points)

(a) (9 points) Determine if each of the following statements is true or false. Briefly explain
your answer to receive full credit.

i. (3 points) If x(t) is an energy signal, then y(t) = x(t) + 1 is also an energy signal.

Solution: False
x(t) + 1 is not an energy signal, adding a constant to a signal will in general make its
energy go to infinity. Consider for instance the finite energy signal: x(t) = e

�t
u(t),

then
Z +1

�1
|x(t) + 1|2dt =

Z +1

�1
(x2(t) + 2x(t))dt +

Z +1

�1
1dt =

1

2
+ 2 +1

Therefore, x(t) + 1 is not an energy signal.

ii. (3 points) If x(t) is an even signal, then y(t) = x(t� 1) is also an even signal.

Solution: False
Consider for instance the unit triangle x(t) = �(t), which is an even function. How-
ever, shifting the unit triangle to the right by one will make it defined only over t � 0,
we then obtain x(t� 1) = �(t� 1), which is not even.
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iii. (3 points) If the input to an LTI system is periodic, then its output is also periodic.

Solution: True
If the input is periodic, then it can be written as:

x(t) =
1X

k=�1
cke

j!0kt

where ck ’s are the Fourier series coefficients of x(t). Then using the eigenfunction
property, we obtain the corresponding output:

y(t) =
1X

k=�1
↵kcke

j!0kt

where ↵k is the eigenvalue that corresponds to e
j!0kt. Therefore, y(t) is also periodic.
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(b) (10 points) Is the following system linear? Is it time invariant? (Check both properties).
Explain your answer.

y(t) =

(
x(t� 1), t � 1

0, otherwise

Solutions: We can equivalently write the system as follows:

y(t) = x(t� 1)u(t� 1)

Linearity: Suppose to inputs x1(t) and x2(t), we respectively get y1(t) and y2(t) as outputs.
Now if we consider the following input x3(t) = ax1(t) + bx2(t), then its output:

y3(t) = x3(t� 1)u(t� 1) = (ax1(t� 1)u(t� 1) + bx2(t� 1)u(t� 1)) = ay1(t) + by2(t)

The system is then linear.

Time Invariant:
If we delay the input by ⌧ , i.e. x⌧ (t) = x(t� ⌧), the output is then:

y⌧ (t) = x⌧ (t� 1)u(t� 1) = x(t� 1� ⌧)u(t� 1)

Now if we delay the output, we get:

y(t� ⌧) = x(t� ⌧ � 1)u(t� ⌧ � 1)

Since y(t� ⌧) 6= y⌧ (t), the system is not time-invariant.
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Problem 2 (17 points) Consider the series cascade of the following two systems:

The system S1 is LTI with impulse response

h1(t) =

Z t

�1
u(⌧)�(⌧ � 2)d⌧

The system S2 is also LTI, with unknown impulse response h2(t) that we need to find. We are
also given that, when the input x(t) is �(t), the output y(t) is r(t� 3) + u(t� 2).

Note: r(t� 3) is the ramp function delayed by 3.

This question continues on the next page.
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(a) (11 points) Find the impulse response h2(t) of the system S2 and determine if the system
S2 is causal.

Solution:

We first simplify the impulse response of the first system:

h1(t) =

Z t

�1
u(⌧)�(⌧ � 2)d⌧ =

Z t

�1
u(2)�(⌧ � 2)d⌧ =

Z t

�1
�(⌧ � 2)d⌧ = u(t� 2)

The impulse response of overall system is given by:

heq(t) = r(t� 3) + u(t� 2)

This is because it is given as the output of the overall system when the input is �(t).
When the input is x(t) = �(t), the intermediate signal between the two systems is the
output of S1 to the input �(t). Therefore, the intermediate signal in this case is: h1(t) =
u(t� 2). Therefore, we have the following for system S2:

Input: u(t� 2) �!S2 output: r(t� 3) + u(t� 2)

Since S2 is LTI, we can deduce its step response (by shifting the output to the left by 2):

Input: u(t) �!S2 output: r(t� 1) + u(t)

Therefore, the step response of S2 is:

r(t� 1) + u(t)

Thus, the impulse response of S2 is:

h2(t) =
d

dt
(r(t� 1) + u(t)) = u(t� 1) + �(t)

Since h2(t) = 0 for t < 0, the LTI system S2 is causal.

Note: We received answers like this: because in h2(t) we have t � 1 in u(t � 1) and t in �(t),
the system then depends on past and present values of the input, then it is causal. This is not

a right justification, because h2(t) is not the input-output relationship of the system, we used

that justification when we have the mapping from the input to output. However, We can using

h2(t) represent the system in terms of its input-output mapping through convolution:

y(t) = h2(t) ⇤ z(t) =

Z 1

�1
h2(⌧)z(t� ⌧)d⌧

where z(t) is the input to the second system. Now we check if y(t) depends on past values of

input by checking the arguments of z. We have y(t) depends on z(t� ⌧) and because h2(⌧) is

zero for ⌧ < 0, ⌧ will always be positive so that z(t � ⌧) will always be a past value of input

for y(t). This is why we can say that the system is causal.
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(b) (6 points) Find the output y(t) to the following input:

x(t) = (1 + e
�t)�(t + 1)

Solution:

Using the sampling property, we can simplify x(t) as follows:

x(t) = (1 + e
�t)�(t + 1) = (1 + e)�(t + 1)

Then,

y(t) = heq(t) ⇤ x(t)

= (r(t� 3) + u(t� 2)) ⇤ ((1 + e)�(t + 1)) = (1 + e)(r(t� 3 + 1) + u(t� 2 + 1))

= (1 + e)(r(t� 2) + u(t� 1))
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Problem 3 (16 points)

(a) (8 points) Consider the signal f(t) shown below:

This signal can be written as

u(t� a) ⇤ rect
✓

t

2b

◆

where a > 0 and b > 0. Find a and b. (Hint: use the flip and drag technique.)

Solution:

Using the flip and drag technique, we have:

b+t-b+t a

f(t) = 0 when there is no overlap, i.e., when b + t < a or t < a � b.We have f(t) = 0 for
t < 2, therefore

a� b = 2

The total overlap happens when �b + t > a or t > a + b. The function f(t) reaches its
maximum at 2b and stays at this value for t > 4, thus

a + b = 4

Solving two equation, we get a = 3 and b = 1.
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(b) (8 points) An input, x(t), is given to an LTI system with impulse response h(t). Both x(t)
and h(t) are shown below.

!

ℎ !

1

-2

1 2

-2
!

# !
2

-1 1

Let y(t) denote the output of the system, i.e., y(t) = x(t)⇤h(t). Find the value of t at which
the output y(t) reaches its maximum value. Determine this maximum value.
Note: to answer this question, you do not need to find y(t) for all t.

Solution:

We know that

y(t) =

Z +1

�1
h(⌧)x(t� ⌧)d⌧

2

-1+t

!(# − %)

%1+t

The maximum value of y(t) happens when the triangle totally overlaps with the rectangle
part of h(t) that only has positive values, as shown here:

-2

1

-2

!

This happens when 1 + t = 0 therefore, t = �1. In this case, the maximum value is the
area of the triangle is:

y(�1) =
2⇥ 2

2
= 2
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Problem 4 (20 points)

Consider the following two periodic signals f(t) and g(t). They both have the same period T0.
Let fk and gk respectively denote the Fourier series coefficients of f(t) and g(t).

(a) (6 points) If f(t) = �g
�
t + T0

2

�
, how is fk related to gk?

Solution: We have:

f(t) =
+1X

k=�1
fke

j!0kt and, g(t) =
+1X

k=�1
gke

j!0kt

Now, if f(t) = �g(t + T0
2 ), then

f(t) = �g(t +
T0

2
)

=
+1X

k=�1
�gke

j!0k(t+
T0
2 )

=
+1X

k=�1
�gke

j!0k
T0
2 e

j!0kt

=
+1X

k=�1
�gke

j 2⇡
T0

k
T0
2 e

j!0kt

=
+1X

k=�1
�gke

j⇡k
e
j!0kt =

+1X

k=�1
�gk(�1)kej!0kt

=
+1X

k=�1
fke

j!0kt

Therefore,

fk = �(�1)kgk
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(b) (6 points) If f(t) = �f
�
t + T0

2

�
, for what k are the coefficients fk zero?

Solution: If f(t) = �f
�
t + T0

2

�
, Then using the previous conclusion, we have:

fk = �(�1)kfk

Therefore, for even k:

fk = �fk ! fk = 0
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(c) (8 points) This question has two parts. Note: part (c) is independent of parts (a) and (b).

i. (4 points) Let fe(t) denote the even part of f(t). Express the Fourier series coefficients
of fe(t) in terms of fk.

Solution:

The even part of the signal is: fe(t) = f(t)+f(�t)
2 , f(�t) is also periodic we thus have:

fe(t) =
f(t) + f(�t)

2

=

P+1
k=�1 fke

j!0kt +
P+1

k=�1 fke
�j!0kt

2

=
1

2

 
+1X

k=�1
fke

j!0kt +
+1X

k=�1
f�ke

j!0kt

!

=
1

2

+1X

k=�1
(fk + f�k)e

j!0kt

=
+1X

k=�1

1

2
(fk + f�k)e

j!0kt

Therefore, the Fourier series coefficients of fe(t) is 1
2(fk + f�k).

ii. (4 points) Determine the DC component of fo(t), the odd part of f(t).

Solution: The Fourier coefficients of the odd part of the signal is fo,k = 1
2(fk � f�k).

Therefore at k = 0, fo,0 = 1
2(f0 � f�0) = 0.

In fact, any odd signal has zero DC component.
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Problem 5 (28 points)

Consider the following system (!0 > 0):

The system S1 is LTI and h(t) represents its impulse response.

(a) (10 points) Show that the overall system, with input x(t) and output y(t), is not time-
invariant.

Solution: The input-output relationship of the system is given by:

y(t) = [ej!0tx(t)] ⇤ h(t) =

Z +1

�1
h(⌧)ej!0(t�⌧)

x(t� ⌧)d⌧ = e
j!0t

Z +1

�1
h(⌧)e�j!0⌧x(t� ⌧)d⌧

If we delay the input, i.e., x↵(t) = x(t� ↵), the corresponding output is:

y↵(t) = e
j!0t

Z +1

�1
h(⌧)e�j!0⌧x↵(t� ⌧)d⌧ = e

j!0t
Z +1

�1
h(⌧)e�j!0⌧x(t� ↵� ⌧)d⌧

On the other hand, if we shift the output, we have:

y(t� ↵) = e
j!0(t�↵)

Z +1

�1
h(⌧)e�j!0⌧x(t� ↵� ⌧)d⌧

Since y(t� ↵) 6= y↵(t), the system is not TI.
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(b) (12 points) Consider the following impulse response for system S1:

h(t) = e
j
!0
2 tsinc

⇣
!0

2⇡
t

⌘

We give the system an input x(t), where x(t) has the following Fourier transform X(j!):

Find and sketch the Fourier transform Y (j!) of the corresponding output y(t). After this,
determine (i) if y(t) is real and (ii) if y(t) is even. Note: you do not need to give an expression

for Y (j!), a sketch of it is enough. There is some space on the next page if needed.

Solution:

If z(t) = x(t)ej!0t, then using the Fourier transform properties, we have:

Z(j!) = X(j(! � !0))

Here is a sketch of Z(j!):

1

2"#"#0

$(&")

Now using the properties we find the Fourier transform of h(t),

sinc(t) ! rect(
!

2⇡
)

sinc(
!0

2⇡
t) ! 2⇡

!0
rect(

!

2⇡
.
2⇡

!0
)

e
j
!0
2 tSinc(

!0

2⇡
t) ! 2⇡

!0
rect(

! � !0
2

!0
)

Therefore, H(j!) is as follows:
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2"
#$

#$0

H(&#)

Since y(t) = h(t) ⇤ z(t), therefore Y (j!) = H(j!)X(j!). Therefore,

2"
#$

#$0

%('#)

Since Y
⇤(j!) 6= Y (�j!), y(t) is not real.

Since Y (j!) is not even, y(t) is not even.
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(c) (6 points) Suppose
z(t) = y(3t� 2)

Express Z(j!) in terms of Y (j!). Note: part (c) is independent of parts (a) and (b).

Solution:

Using the properties:

y(t) ! Y (j!)

y(3t) ! 1

3
Y (

j!

3
)

y(3(t� 2

3
)) ! 1

3
e
�j 2

3!Y (
j!

3
)
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BONUS (6 points)

(a) (4 points) The Fourier transform X(j!) of a signal x(t) is given as follows:

Find the phase of x
2(t).

Solution:

Let F (j!) = X(j(! + 1
2)). Thus, F (j!) is real and even. Therefore,

f(t) = e
�jt 12 x(t)

is a real function. Thus,
x(t) = e

jt 12 f(t)

and,
x
2(t) = e

jt
f
2(t)

Therefore the phase of x
2(t) is t.
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(b) (2 points) If a signal x(t) is causal with x(0) = 0, how can we retrieve x(t) from its even
component xe(t)?

Solution:

Since this signal is causal, therefore:

x(t) = 0, for t < 0

xe(t) =
x(t) + x(�t)

2
=

(
x(�t)

2 , t < 0
x(t)
2 , t > 0

Therefore,
x(t) = 2xe(t), for t > 0

and
x(t) = 0, for t  0
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Fourier Transform Tables

366 4. Fourier Analysis for Continuous-Time Signals and Systems

The right side of Eqn. (4.295) is the function the Fourier transform of which we are seeking.
We also know from Eqn. (4.279) that

F {x (t) ⇤ u (t)} = X (!) U (!) (4.296)

Thus we have

F
⇢ˆ t

�1
x(�) d�

�
= ⇡ X (!) � (!) +

X (!)

j!
(4.297)

Using the sampling property of the impulse function, Eqn. (4.297) becomes

F
⇢ˆ t

�1
x(�) d�

�
= ⇡ X (0) � (!) +

X (!)

j!
(4.298)

Table 4.4 contains a summary of key properties of the Fourier transform. Table 4.5 lists
some of the fundamental Fourier transform pairs.

Property Signal Transform
Linearity ↵ x1 (t) + � x2 (t) ↵ X1�(j!) + � � X2�(j!)
Duality X (t)
Conjugate x (t) real

⇡ x (�2 !)
X

⇤�(j!) = � X�(�j!)
symmetry Magnitude:

Phase:
Real part:

|X�(�j!)|�=�|X�(j!)|
⇥�(�!) = � �⇥ � (!)�
Xr�(�j!) = � Xr�(j!)

Conjugate x (t) imaginary
Imaginary�part:�Xi�(�j!) = � �Xi�(j!)�

X
⇤�(j!) = �X�(�j!)

antisymmetry Magnitude:
Phase:
Real part:

|X�(�j!)|�=�|X�(j!)|
⇥�(�!) = � �⇥ � (!)�⌥�⇡�
Xr�(�j!) = � �Xr�(j!)

Even signal x (�t) = x (t)
Odd signal x (�t) = �x (t)
Time shifting x(t � ⌧)
Frequency shifting x (t) e

j!0t

Imaginary�part:�Xi�(�j!) = � Xi�(j!)�
X�(j!): even
X�(j!): odd
X�(j!)�e�j!⌧

X�(j(!���!0)

Modulation property x (t) cos(!0t) 1

2 [X�(j(!���!0) )+ �X�(j(!�+�!0))]

Time and frequency scaling x (at)
1

|a| X

⇣
j!
a

⌘

Di↵erentiation in time
d

n

dtn
[x (t)] (j!)n�

X�(j!)

Di↵erentiation in frequency (�jt)n x (t)
d

n

[X�(j!)]

Convolution x1 (t) ⇤ x2 (t)
d!n

X1�(j!)�X2�(j!)

Multiplication x1 (t) x2 (t)
1

2⇡
X1�(j!)�⇤�X2�(j!)

Integration

ˆ t

�1
x(�) d�

X�(j!)
j!

+ ⇡ X(0) � (!)

Parseval’s theorem

ˆ 1

�1
|x (t)|2 dt =

1

2⇡

ˆ 1

�1
|X�(j!)|2�d!

Table 4.4 – Fourier transform properties.

x(t): even and real

x(t): odd and real

x(t): even and imaginary

x(t): odd and imaginary

X�(j!): even and real

X�(j!): odd and imaginary

X�(j!): even and imaginary

X�(j!): odd and real

Additional properties:
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4.3. Analysis of Non-Periodic Continuous-Time Signals 367

Name Signal Transform

Rectangular pulse x (t) = A rect( t/⌧) X�(j!) = � A⌧�sinc
⇣

!⌧

2⇡

⌘

Triangular pulse x (t) = A⇤ (t/⌧) X�(j!) = � A⌧�sinc2
⇣

!⌧

2⇡

⌘

Right-sided exponential x (t) = e
�at

u (t) X�(j!) =
1

a + j!

Two-sided exponential x (t) = e
�a|t| X�(j!) = 2a

a2 + !2

Signum function x (t) = sgn (t) X�(j!) =
2

j!

Unit impulse x (t) = � (t) X�(j!) = � 1

Sinc function x (t) = sinc (t) X�(j!) =
⇣

!

2⇡

⌘

Constant-amplitude signal x (t) = 1, all t (j!) =X 2⇡ � (!)

x (t) =
1

⇡t
X�(j!) = � �j�sgn�(!)

Unit-step function x (t) = u (t) X�(j!) = ⇡ � (!) + 1
j!

Modulated pulse x (t) =

✓
t

⌧

◆
cos (!0t) X�(j!) =

⌧

2
sinc

✓
(! � !0) ⌧

2⇡

◆
+

⌧

2
sinc

✓
(! + !0) ⌧

2⇡

◆

Table 4.5 – Some Fourier transform pairs.

4.3.6 Applying Fourier transform to periodic signals

In developing frequency-domain analysis methods in the previous sections of this chapter
we have distinguished between periodic and non-periodic continuous-time signals. Periodic
signals were analyzed using various forms of the Fourier series such as TFS, EFS or CFS.
In contrast, Fourier transform was used for analyzing non-periodic signals. While this
distinction will be appropriate when we work with one type of signal or the other, there
may be times when we need to mix periodic and non-periodic signals within the same
system. An example of this occurs in amplitude modulation where a non-periodic message
signal may be multiplied with a periodic carrier signal. Another example is the use of a
periodic signal as input to a system the impulse response of which is non-periodic. In such
situations it would be convenient to use the Fourier transform for periodic signals as well.
In general a periodic signal is a power signal that does not satisfy the existence conditions
for the Fourier transform. It is neither absolute integrable nor square integrable. On the
other hand, we have seen in Example 4.20 that a Fourier transform can be found for a
constant-amplitude signal that does not satisfy the existence conditions, as long as we are
willing to accept singularity functions in the transform. The next two examples will expand
on this idea. Afterwards we will develop a technique for converting the EFS representation

rect

rect

Note:
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