ECE 102, Fall 2018 FINAL STATISTICS

Department of Electrical and Computer Engineering Prof. J.C. Kao University of California, Los Angeles TAs H. Salami & S. Shahsavari

Statistics: Mean: 80.0% (out of 100%), Standard deviation: 19.3, 25th perentile: 72.5%, Median: 84.8%, 75th percentile: 94%, Maximum score: 103.25%, Number of exams: 98

Comments:

- Regrades should be submitted if you believe we applied the rubric mistakenly. Please submit these via Gradescope. Hawraa graded questions 1, 2, and the bonus; Shadi graded questions 3 and 4; Jonathan graded questions 5 and 6.
- You demonstrated a solid understanding of material on the final. While the detailed statistics are above, I'd like to highlight that the median score was an 84.8% and the mean was 80%.
- *•* Your final course grades were calculated using your exam and HW scores on Gradescope; we subsequently added any participation bonuses. You can calculate your letter grade by applying the scale in the syllabus. If you believe I miscalculated your final letter grade, please send me an e-mail.

ECE 102, Fall 2018 Final Exam

Department of Electrical and Computer Engineering Prof. J.C. Kao University of California, Los Angeles TAs: H. Salami, S. Shahshavari

UCLA True Bruin academic integrity principles apply. Open: Four pages of cheat sheet allowed. Closed: Book, computer, internet. 11:30am-2:30pm, Haines Room 118 Tuesday, 11 Dec 2018.

State your assumptions and reasoning. No credit without reasoning. Show all work on these pages.

Name:

Signature:

ID#:

Problem 1 (25 points)

Consider a bandlimited signal $m(t)$, its frequency spectrum $M(j\omega)$ is shown below. We modulate *m*(*t*) with $cos(\omega_c t + \theta_c)$, where θ_c is a constant phase but unknown:

(a) (8 points) Express $X_c(j\omega)$, the Fourier transform of $x_c(t)$, in terms of $M(j\omega)$. *Hint: use the fact that* $cos(u) = \frac{e^{ju} + e^{-ju}}{2}$.

Solution:

We have:

$$
x_c(t) = m(t)\cos(\omega_c t + \theta_c) = m(t)\frac{1}{2}\left(e^{j(\omega_c t + \theta_c)} + e^{-j(\omega_c t + \theta_c)}\right)
$$

$$
= \frac{1}{2}e^{j\theta_c}m(t)e^{j\omega_c t} + \frac{1}{2}e^{-j\theta_c}m(t)e^{-j\omega_c t}
$$

$$
X_c(j\omega) = \frac{1}{2}e^{j\theta_c}M(j(\omega - \omega_c)) + \frac{1}{2}e^{-j\theta_c}M(j(\omega + \omega_c))
$$

(b) (10 points) We demodulate $x_c(t)$ as follows:

Show that $y(t) = \frac{1}{2} \cos(\theta_c) m(t)$. Assume $\omega_c \gg \omega_M$.

Solution: The input of the low pass filter:

 $x_c(t) \cos(\omega_c t)$

Taking its Fourier transform, we obtain:

$$
\frac{1}{2}X_c(j(\omega - \omega_c)) + \frac{1}{2}X_c(j(\omega + \omega_c)) =
$$
\n
$$
\frac{1}{4}e^{j\theta_c}M(j(\omega - 2\omega_c)) + \frac{1}{4}e^{-j\theta_c}M(j\omega) + \frac{1}{4}e^{j\theta_c}M(j\omega) + \frac{1}{4}e^{-j\theta_c}M(j(\omega + 2\omega_c)) =
$$
\n
$$
\frac{1}{4}e^{j\theta_c}M(j(\omega - 2\omega_c)) + \frac{1}{4}\left(e^{-j\theta_c} + e^{j\theta_c}\right)M(j\omega) + \frac{1}{4}e^{-j\theta_c}M(j(\omega + 2\omega_c)) =
$$
\n
$$
\frac{1}{4}e^{j\theta_c}M(j(\omega - 2\omega_c)) + \frac{1}{2}\cos(\theta_c)M(j\omega) + \frac{1}{4}e^{-j\theta_c}M(j(\omega + 2\omega_c))
$$

After the low pass-filter, the term that only remains is

$$
\frac{1}{2}\cos(\theta_c)M(j\omega)
$$

$$
y(t) = \frac{1}{2}\cos(\theta_c)m(t)
$$

(c) (7 points) Assume that you also know $z(t) = \frac{1}{2} \sin(\theta_c) m(t)$. How can you recover $m(t)$ from $y(t)$ and $z(t)$? *Hint:* $cos^2(u) + sin^2(u) = 1$.

Solution:

To recover $m(t)$ from $z(t)$ and $y(t)$, we can compute the following:

$$
2\sqrt{y^2(t) + z^2(t)}
$$

This is because:

$$
2\sqrt{y^2(t) + z^2(t)} = 2\sqrt{\left(\frac{1}{4}\cos^2(\theta_c)m^2(t) + \frac{1}{4}\sin^2(\theta_c)m^2(t)\right)} = 2\sqrt{\frac{1}{4}m^2(t)} = m(t)
$$

Note: We noticed that we forgot to mention in the question that $m(t) > 0$. So we as*sumed all of the following answers as correct:* $m(t)$, $\pm m(t)$, or $|m(t)|$. We also accepted *answers where the above operation was proposed to be done in the frequency domain, i.e.,* $\mathcal{F}^{-1}\left\{2\sqrt{Y(j\omega)^2+Z(j\omega)^2}\right\}$. Some of you proposed the following:

$$
2(z(t)\sin(\theta_c) + y(t)\cos(\theta_c))
$$

This method is mathematically valid, but it cannot be implemented to recover m(*t*) *because* θ_c *is unknown for us, i.e., we cannot multiply* $z(t)$ *or* $y(t)$ *by a factor that we do not know. However, we gave full credit for it.*

m(*t*)

Problem 2 (41 points)

Consider the following Tequence of short rect(\cdot) pulses *T* denoted $\mathbb{D}f p(t)$: 3*T* $3T_t$

Each rect (\cdot) pulse has width τ , and the pulses are spaced by T as diagrammed above.

t 3*T* 2*T T* 0 *T* 2*T* 3*T* where possible. *Hint: One approach is to write p*(*t*) *as convolution of a rect function with an* (a) (14 points) Find $P(j\omega)$, the Fourier transform of $p(t)$. Express $P(j\omega)$ as a sum, and simplify *impulse train*.

Solution:

 \blacksquare and \blacksquare is the signal one message only use $p(t)$ as follows: of the time, see also the time, see also the same channel. This is a channel. This is a

$$
p(t) = \mathrm{rect}\left(\frac{t}{\tau}\right) * \delta_T(t)
$$

In the problem we can retrieve with a single message, and whether we can retrieve it. The reference it. The retrieve it. Therefore,

$$
P(j\omega) = \tau \operatorname{sinc}\left(\frac{\omega \tau}{2\pi}\right) \cdot \omega_0 \delta_{\omega_0}(\omega)
$$

where $\omega_0 = \frac{2\pi}{T}$. Therefore,

$$
P(j\omega) = \tau \operatorname{sinc}\left(\frac{\omega\tau}{2\pi}\right) \cdot \omega_0 \delta_{\omega_0}(\omega)
$$

$$
= \tau \omega_0 \operatorname{sinc}\left(\frac{\omega\tau}{2\pi}\right) \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_0)
$$

$$
= \tau \omega_0 \sum_{k=-\infty}^{\infty} \operatorname{sinc}\left(\frac{\omega\tau}{2\pi}\right) \delta(\omega - k\omega_0)
$$

$$
= \tau \omega_0 \sum_{k=-\infty}^{\infty} \operatorname{sinc}\left(\frac{k\omega_0\tau}{2\pi}\right) \delta(\omega - k\omega_0)
$$

(b) (10 points) Consider the following system: ϵ , ϵ and ϵ following communication size ϵ and ϵ

where the input $m(t)$ is multiplied with the rect pulse train, $p(t)$. The signal $m(t)$ is bandlimited and it has the following frequency spectrum:

Assume that the rect(\cdot) pulses are spaced by $T = \frac{1}{2B}$. Express the spectrum $X(j\omega)$ of $x(t)$ in terms of $M(j\omega)$.

Solution: Since $x(t) = p(t)m(t)$, we have:

$$
X(j\omega) = \frac{1}{2\pi} M(j\omega) * P(j\omega)
$$

\n
$$
= \frac{1}{2\pi} M(j\omega) * \tau \omega_0 \sum_{k=-\infty}^{\infty} \text{sinc}\left(\frac{k\omega_0 \tau}{2\pi}\right) \delta(\omega - k\omega_0)
$$

\n
$$
= \frac{\tau}{T} M(j\omega) * \sum_{k=-\infty}^{\infty} \text{sinc}\left(\frac{k\omega_0 \tau}{2\pi}\right) \delta(\omega - k\omega_0)
$$

\n
$$
= \frac{\tau}{T} \sum_{k=-\infty}^{\infty} \text{sinc}\left(\frac{k\tau}{T}\right) M(j(\omega - k\omega_0))
$$

\n
$$
= \frac{\tau}{T} \sum_{k=-\infty}^{\infty} \text{sinc}\left(\frac{k\tau}{T}\right) M(j(\omega - k\omega_0))
$$

where $\omega_0 = \frac{2\pi}{T} = 4\pi B \text{ rad/s}.$

(c) (10 points) Sketch $X(j\omega)$ for $-6\pi B \le \omega \le 6\pi B$.

Note that $sinc(0) = 1$.

(d) (7 points) Find the spectrum of the signal at the output of the lowpass filter $Y(j\omega)$, i.e., find an expression of $Y(j\omega)$ in terms of $M(j\omega)$.

Solution: After the low pass filter, we have:

$$
Y(j\omega) = \frac{\tau}{T}M(j\omega)
$$

Problem 3 (30 points)

An LTI system *S* is cascaded in series with two other non-LTI systems as follows:

$$
x(t) \longrightarrow S_1 \qquad w(t) \longrightarrow S_2 : \text{LTI} \longrightarrow x(t) \longrightarrow y(t)
$$

The system S_1 is given by:

$$
w(t) = x\left(\frac{t}{2}\right)
$$

And the system \mathcal{S}_2 is:

 $y(t) = z(2t)$

The system *S* has $H(j\omega)$ as its frequency response.

(This question continues on the next page.)

(a) (15 points) Find how $Y(j\omega)$ is related to $X(j\omega)$, in terms of $H(j\omega)$. Deduce the overall frequency response $H_{eq}(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$.

Solution:

We have:

$$
w(t) = x\left(\frac{t}{2}\right) \to W(j\omega) = 2X(j2\omega)
$$

$$
z(t) = h(t) * w(t) \to Z(j\omega) = H(j\omega)W(j\omega)
$$

$$
y(t) = z(2t) \to Y(j\omega) = \frac{1}{2}Z\left(j\frac{\omega}{2}\right)
$$

Therefore,

$$
Y(j\omega) = \frac{1}{2}Z\left(j\frac{\omega}{2}\right) = \frac{1}{2}H\left(j\frac{\omega}{2}\right)W\left(j\frac{\omega}{2}\right) = H\left(j\frac{\omega}{2}\right)X(j\omega)
$$

$$
H_{eq}(j\omega) = H\left(j\frac{\omega}{2}\right)
$$

(b) (15 points) If $H(j\omega)$ is given by:

$$
H(j\omega) = \frac{2a - j\omega}{2a + j\omega}
$$

where $a > 0$, find the impulse response $h(t)$ of the system *S*. Deduce the overall impulse response $h_{eq}(t).$

Solution: We have:

$$
H(j\omega) = \frac{2a}{2a + j\omega} - \frac{j\omega}{2a + j\omega}
$$

Therefore,

$$
h(t) = 2ae^{-2at}u(t) - \frac{d}{dt}(e^{-2at}u(t)) = 2ae^{-2at}u(t) - (-2ae^{-2at}u(t) + \delta(t)) = 4ae^{-2at}u(t) - \delta(t)
$$

Since $H_{eq}(j\omega) = H\left(j\frac{\omega}{2}\right)$, we have:

$$
h_{eq}(t) = 2h(2t) = 8ae^{-4at}u(2t) - 2\delta(2t) = 8ae^{-4at}u(t) - \delta(t)
$$

Problem 4 (40 points)

Consider the following system:

(a) (10 points) Find the transfer function $H_1(s)$ of the system that maps $v(t)$ to $y(t)$.

Solution:

$$
Y(s) = H(s)(V(s) - Y(s)) \implies \frac{Y(s)}{V(s)} = \frac{H(s)}{1 + H(s)}
$$

$$
H_1(s) = \frac{H(s)}{1 + H(s)}
$$

(b) (5 points) Find the overall transfer function $H_{eq}(s)$.

Solution:

$$
H_{eq}(s) = G(s)H_1(s) = G(s)\frac{H(s)}{1 + H(s)}
$$

(c) (10 points) How can we choose *H*(*s*) in terms of *G*(*s*) so that the overall system has the following impulse response $h_{eq}(t) = \delta(t)$?

Solution:

$$
h_{eq}(t) = \delta(t) \to H_{eq}(s) = 1
$$

Thus, we need to have:

$$
G(s)\frac{H(s)}{1+H(s)} = 1 \implies G(s)H(s) = 1 + H(s) \implies H(s) = \frac{1}{G(s)-1}
$$

(d) (15 points) Using the relation you found in part (c), find $h(t)$ if $g(t) = e^{-2t}u(t)$.

Solution:

$$
G(s) = \frac{1}{s+2}
$$

Therefore,

$$
H(s) = \frac{1}{\frac{1}{s+2} - 1} = -\frac{s+2}{s+1} = -\left(1 + \frac{1}{s+1}\right)
$$

Thus,

$$
h(t) = -\delta(t) - e^{-t}u(t)
$$

Problem 5 (20 points)

A system is described by the following differential equation:

$$
y''(t) + 5y'(t) + 6y(t) = x'(t) + 5x(t)
$$

If the input is

$$
x(t) = e^{-4t}u(t-2)
$$

find the output $y(t)$. Assume all initial conditions are zero.

There is additional space on the next page if needed.

Solution: Applying the Laplace trasnform to the differential equation:

$$
s^{2}Y(s) + 5sY(s) + 6Y(s) = sX(s) + 5X(s)
$$

Therefore,

$$
Y(s) = \frac{s+5}{s^2 + 5s + 6}X(s)
$$

Now,

$$
x(t) = e^{-8}e^{-4(t-2)}u(t-2) \implies X(s) = e^{-8}e^{-2s}\frac{1}{s+4}
$$

Therefore,

$$
Y(s) = e^{-8}e^{-2s} \frac{s+5}{(s+3)(s+2)(s+4)} = e^{-8}e^{-2s} \left(\frac{A}{s+3} + \frac{B}{s+2} + \frac{C}{s+4}\right)
$$

where,

$$
A = \frac{s+5}{(s+2)(s+4)}\Big|_{s=-3} = -2
$$

\n
$$
B = \frac{s+5}{(s+3)(s+4)}\Big|_{s=-2} = 3/2
$$

\n
$$
C = \frac{s+5}{(s+3)(s+2)}\Big|_{s=-4} = 1/2
$$

$$
y(t) = e^{-8} \left(-2e^{-3(t-2)} + \frac{3}{2}e^{-2(t-2)} + \frac{1}{2}e^{-4(t-2)}\right)u(t-2)
$$

Problem 6 (44 points)

(a) (24 points) Determine if each of the following four statements is true or false. When the statement is false, a counter example is sufficient. If the statement is true, you must justify your answer to receive full credit.

i. If $x(t) * y(t) = 0$, then $x(t) = 0$ or $y(t) = 0$.

Solution: False: We know that:

$$
x(t) * y(t) \to X(j\omega)Y(j\omega)
$$

Let

$$
X(j\omega) = \text{rect}(\omega)
$$
 and $Y(j\omega) = \text{rect}(\omega - 2)$

We then have

$$
X(j\omega)Y(j\omega) = 0
$$

while $X(j\omega) \neq 0$ and $Y(j\omega) \neq 0$.

ii. If $x(t) * h(t) = x(t)$, then $h(t)$ must be an impulse, i.e., $h(t) = \delta(t)$.

Solution:

False: We have:

$$
x(t) * h(t) \to X(j\omega)H(j\omega)
$$

If $x(t)$ is bandlimited to $\pm \frac{1}{2}\omega_c$ and $H(j\omega) = \text{rect}\left(\frac{\omega}{2\omega_c}\right)$, then

$$
X(j\omega)H(j\omega) = X(j\omega)
$$

However, $h(t)$ is not an impulse.

iii. A signal $x(t)$ is bandlimited where its Fourier transform $X(j\omega) = 0$ for $|\omega| > 2\pi B$ rad/s. The Nyquist rate of $cos(4\pi Bt)x(t-2) + x(2t)$ is 6*B* Hz.

Solution:

True The fourier trasnform of the given signal:

$$
\frac{1}{2}\left(e^{-j2(\omega-4\pi B)}X(j(\omega-4\pi B))+e^{-j2(\omega+4\pi B)}X(j(\omega+4\pi B))\right)+\frac{1}{2}X(j\omega/2)
$$

The highest frequency component is: $6\pi B$ rad/s or $3B$ Hz. Therefore, the Nyquist rate: $2(3B) = 6B$ Hz

iv. If $x(t) = \text{sinc}(t)$, then the energy of $x(3t + 2)$ is $\frac{1}{3}$.

Solution:

True: Let $y(t) = x(3t + 2)$, then the energy of $y(t)$ is given by:

$$
\int_{-\infty}^{\infty} |y(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |Y(j\omega)|^2 d\omega
$$

Now,

$$
Y(j\omega)=\frac{1}{3}e^{j2\omega/3}X(j\omega/3)=\frac{1}{3}e^{j2\omega/3}\mathrm{rect}(\omega/6\pi)
$$

$$
\frac{1}{2\pi} \int_{-\infty}^{\infty} |Y(j\omega)|^2 d\omega = \frac{1}{2\pi} \frac{1}{9} \int_{-3\pi}^{3\pi} 1 d\omega = \frac{6\pi}{2\pi \cdot 9} = \frac{1}{3}
$$

(b) (10 points) If $y(t) = x(t) * h(t)$, then show that the following identity holds:

$$
\int_{-\infty}^{\infty} y(t)dt = \left(\int_{-\infty}^{\infty} h(t)dt\right) \cdot \left(\int_{-\infty}^{\infty} x(t)dt\right)
$$

Hint: One approach is to look at the integral expression for the Fourier transform when $\omega = 0.$

Solution:

We have

$$
Y(j\omega) = H(j\omega)X(j\omega)
$$

Therefore, if we evaluate the above equality at $\omega = 0$, we have:

$$
Y(0) = H(0)X(0)
$$

Now since

$$
Y(j\omega) = \int_{-\infty}^{\infty} y(t)e^{-j\omega t}dt \implies Y(0) = \int_{-\infty}^{\infty} y(t)dt
$$

we conclude:

$$
\int_{-\infty}^{\infty} y(t)dt = \left(\int_{-\infty}^{\infty} h(t)dt\right) \cdot \left(\int_{-\infty}^{\infty} x(t)dt\right)
$$

(c) (10 points) An LTI system has the following impulse response: $h(t) = e^t u(-1 - t)$. Is the system stable? Is it causal?

Solution:

Since $u(-t-1) = 1$ for $t \le -1$, we have $h(t) \ne 0$ for $t < 0$, therefore the system is not causal.

$$
\int_{-\infty}^{\infty} |h(t)| dt = \int_{t=-\infty}^{-1} e^{t} dt = e^{-1} < \infty
$$

The system is then stable.

BONUS (10 points)

(a) (5 points) Two LTI systems are linearly cascaded as follows:

The impulse response of the first system is $h_1(t) = e^t u(t)$ and the impulse response of the second system is $h_2(t) = e^{2t} \cos(t)$. What is the impulse response of the equivalent system $h_{eq}(t)$?

Solution:

Since the two systems are LTI, we can switch the order so that system S_2 comes first and S_1 is the second system. Then in this case, computing $h_{eq}(t)$ is equivalent to compute the output of system S_1 to input $e^{2t} \cos(t)$. To compute the output we are going to use the eigenfunction property. We have the following:

$$
H_1(s) = \frac{1}{s-1}, \quad \text{Re}\{s\} > 1
$$

and

$$
e^{2t}\cos(t) = \frac{1}{2}e^{(2+j)t} + \frac{1}{2}e^{(2-j)t}
$$

$$
h_{eq}(t) = \frac{1}{2}H_1(2+j)e^{(2+j)t} + \frac{1}{2}H_1(2-j)e^{(2-j)t}
$$

= $\frac{1}{2}\frac{1}{1+j}e^{(2+j)t} + \frac{1}{2}\frac{1}{1-j}e^{(2-j)t}$
= $\frac{1}{4}(1-j)e^{(2+j)t} + \frac{1}{4}(1+j)e^{(2-j)t}$
= $\frac{1}{2}e^{2t}(\cos(t) + \sin(t))$

(b) (5 points) If F_s is the Nyquist rate of $x(t)$, determine in terms of F_s , the Nyquist rate of $x^3(t) * x^2(t)$.

Solution:

If F_s is the Nyquist rate of $x(t)$, then the highest frequency component of $x(t)$ is: $F_s/2$ and *x*(*t*) is bandlimited to $\pm Fs/2$.

Now,

$$
y(t) = x^{3}(t) \implies Y(j\omega) = \frac{1}{2\pi}X(j\omega) * \left(\frac{1}{2\pi}X(j\omega) * X(j\omega)\right)
$$

Therefore, if $x(t)$ is bandlimited to $\pm F_s/2$, $y(t)$ is then bandlimited to $\pm 3F_s/2$.

$$
z(t) = x^2(t) \implies Y(j\omega) = \left(\frac{1}{2\pi}X(j\omega) * X(j\omega)\right)
$$

Therefore, if $x(t)$ is bandlimited to $\pm F_s/2$, $z(t)$ is then bandlimited to $\pm 2F_s/2$ or $\pm F_s$. Now

$$
y(t) * z(t) \to Y(j\omega)Z(j\omega)
$$

This means that $y(t) * z(t)$ is bandlimited to $\pm Fs$. Therefore the Nyquist rate is $2F_s$.

Fourier Transform Tables Eourier Transform Tables

x(t): odd and real $x(t)$: even and imaginary *x*(t): odd and imaginary

 $X(j\omega)$: odd and imaginary $X(j\omega)$: even and imaginary

 $X(j\omega)$: odd and real

Note: $\sin(\pi \alpha)$ $\qquad \qquad$ **Table 4.5** – Some Fourier transform pairs.

LAPLACE TRANSFORM

1. Some Laplace transform pairs

2 LAPLACE TRANSFORM

Signal Transform ROC $X(s)$ *R_x* $X_1(s)$ *R*₁ $X_2(s)$ *R*₂ $ax_1(t) + bx_2(t)$ *aX*₁(*s*) + *bX*₂(*s*) At least *R*₁ \cap *R*₂ $x(t - t_0)$ *e*^{$-st_0X(s)$ *R_x*} $e^{s_0t}x(t)$ *x*($s - s_0$) Shifted version of R_x (*s* is in the ROC if $s - s_0 \in R_x$) $x(at), a > 0$ 1 $\frac{1}{a}X\left(\frac{s}{a}\right)$ *a* ⌘ Scaled version of *R^x* (*s* is in the ROC if $s/a \in R_x$) *x*1(*t*) ⇤ *x*2(*t*) *X*1(*s*)*X*2(*s*) At least *R*¹ \ *R*² \int_0^t 0 $x(\tau)d\tau$ *X*(*s*) *s* At least $R_x \cap \{Re\{s\} > 0\}$ $\frac{d}{dt}x(t)$ $\frac{d}{dt}x(t)$ *sX*(*s*) – *x*(0) At least *R_{<i>x*}</sub> $\frac{d^2}{dt^2}x(t)$ $s^2 X(s) - sx(0) - x'(0)$ At least R_x $\frac{d}{ds}X(s)$ *R_x*

2. Laplace transform properties