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Problem 1 (25 points)

Consider a bandlimited signal m(t), its frequency spectrum M (jw) is shown below. We modulate
m(t) with cos(w.t + 6.), where 6, is a constant phase but unknown:

M (jw)

1 m(t) ? ae(t)

cos(wet + 0.)

(a) (8 points) Express X.(jw), the Fourier transform of z.(¢), in terms of M (jw). Hint: use the

fact that cos(u) = 6”*26_”
Solution:
We have:
zc(t) = m(t) cos(wct + 0.) = m(t)% (ej(‘“ct*ec) + e*j(wctﬂ?c))
Loyt 4 L
Therefore,

Xo(jw) = 5 MG — we)) + e M(jw + o))



(b) (10 points) We demodulate z.(t) as follows:

—Wnp WM

z.(t) ? oF— u(t)

cos(wet)

1
Show that y(t) = 3 cos(0.)m(t). Assume w. > wyy.
Solution: The input of the low pass filter:
Zc(t) cos(wet)
Taking its Fourier transform, we obtain:
1 , 1 .
ch(](w - Wc)) + ch(] (w + Wc)) =
1 1 _. 1. 1
EGJOCM(j(w — 2we)) + ZefjecM(jw) + ZejecM(jw) + ZefjecM(j(w + 2w,.)) =
1 . 1 , 4 1 .
ZejecM(j(w —2w,)) + 1 (e*JGC + 6396> M (jw) + EefjecM(j(w + 2w,)) =
1 . 1 1 .
EejecM(j(w —2w,)) + 3 cos(0.) M (jw) + Ze_jecM(j(w + 2w,))
After the low pass-filter, the term that only remains is
1 .
3 cos(0.) M (jw)
Therefore,

y(t) = 5 cos(e)mlt)



(¢) (7 points) Assume that you also know z(t) = % sin(6.)m(t). How can you recover m(t)

from y(t) and z(¢)?
Hint: cos?(u) + sin®(u) = 1.

Solution:
To recover m(t) from z(¢) and y(¢), we can compute the following:

2v/y?(t) + 22(t)

This is because:

2 /o2 () + 2(0) = 2 <i cos2(60,)m2(t) + isin2(ec)m2(t)) —9 imQ(t) — m(t)

Note: We noticed that we forgot to mention in the question that m(t) > 0. So we as-
sumed all of the following answers as correct: m(t), £m(t), or |m(t)|. We also accepted
answers where the above operation was proposed to be done in the frequency domain, i.e.,
F~H2\/Y(jw)? + Z(jw)?}. Some of you proposed the following:

2 (z(t) sin(0.) + y(t) cos(6.))

This method is mathematically valid, but it cannot be implemented to recover m(t) because
0. is unknown for us, i.e., we cannot multiply z(t) or y(t) by a factor that we do not know.
However, we gave full credit for it.



Problem 2 (41 points)
Consider the following sequence of short rect(-) pulses, denoted by p(t):

sl e T

IR O

=37 =27 =T

Each rect(-) pulse has width 7, and the pulses are spaced by 7" as diagrammed above.

(a) (14 points) Find P(jw), the Fourier transform of p(¢). Express P(jw) as a sum, and simplify
where possible. Hint: One approach is to write p(t) as convolution of a rect function with an
impulse train.

Solution:
We can write p(t¢) as follows:

p(t) = rect C) <50 (t)

Therefore,
, . (wT
P(jw) = 7sinc <%) - Wl (W)

2
where wg = % Therefore,
P(jw) = 7sinc (ﬂ) Wl (W)
2

= Twpsinc (%) i §(w — kwo)

k=—00
. T
= Twp Z sinc <§> d(w — kwo)
> kwoT
= Twp Z sine | — O(w — kwp)
k=—00



(b) (10 points) Consider the following system:

m(t) (1) () AHGW)| ()

X » Channel |—%» | | —>
427B 27
p(t)

where the input m(t) is multiplied with the rect pulse train, p(¢). The signal m(t) is ban-
dlimited and it has the following frequency spectrum:

M (jw)

—27B 2B w

1
Assume that the rect(-) pulses are spaced by 1" = 35" Express the spectrum X (jw) of x(¢)
in terms of M (jw).

Solution: Since x(t) = p(t)m(t), we have:

X(jw) = o= M(juw)  P(je)

27
= i]\/I( jw) * Tw i sinc FiwoT d(w — kwp)
27 J T Ok:—oo 2 0
T ) = kwot
= TM(]CU) * k_zoosmc < 5. ) d(w — kwo)
=T i sinc hT M (j(w — kwo))
T e T J 0
=T i sinc hT M (j(w — kwo))
T e T J 0

where wg = 2% = 47 B rad/s.



(c) (10 points) Sketch X (jw) for —67B < w < 67B.

I T
: TSiH(‘(T/T)
|

—61B  —wo —27B 0 27 B «wo 6rB w
wo = 4B

Note that sinc(0) = 1.



(d) (7 points) Find the spectrum of the signal at the output of the lowpass filter Y (jw), i.e.,
find an expression of Y (jw) in terms of M (jw).

Solution: After the low pass filter, we have:

Y (jw) = = M(jw)



Problem 3 (30 points)

An LTI system S is cascaded in series with two other non-LTI systems as follows:

The system Sl is given by
(t) !
w X *2

y(t) = 2(2t)

The system S has H (jw) as its frequency response.

And the system S, is:

(This question continues on the next page.)



(a) (15 points) Find how Y (jw) is related to X (jw), in terms of H(jw). Deduce the overall

frequency response H.,(jw) = )Y(E?cii
Solution:
We have:

w(t) = o (;) S W (jw) = 2X (j2w)

z(t) = h(t) x w(t) = Z(jw) = H(jw>W(jw)
y(t) = 2(20) > Y (i) = 37 (45 )
Therefore, . .
Vo= 12 (5%) =S (55w () = 1 5%) ¥ 0

Therefore,

10



(b) (15 points) If H(jw) is given by:

20— jw
© 2a+ jw

H(jw)

where a > 0, find the impulse response h(t) of the system S. Deduce the overall impulse
response he,(t).

Solution: We have: ‘
2a Jw

- 2a+jw_2a+jw

H(jw)

Therefore,
h(t) = 2ae 2% u(t)——

Since Heq(jw) = H (j%), we have:

heq(t) = 2h(2t) = 8ae™**u(2t) — 26(2t) = S8ae™**u(t) — &(t)

11



Problem 4 (40 points)

Consider the following system:

Hy(s)
x(t) G(s) T || H(s) || y(t)

(a) (10 points) Find the transfer function H;(s) of the system that maps v(t) to y(t).

Solution:
Y(s) = H(s)(V(s) = Y(s)) = ‘5;8 = fl(;zs)
Therefore,
Hils) =5 fl(;zs)

12



(b) (5 points) Find the overall transfer function H,,(s).

Solution:

(c) (10 points) How can we choose H(s) in terms of G(s) so that the overall system has the
following impulse response h¢q(t) = §(t)?

Solution:

Thus, we need to have:

H(s) _ = !
B ik G(s)H(s) =1+ H(s) = H(s) = Cs) 1

G(s)

13



(d) (15 points) Using the relation you found in part (c), find h(t) if g(t) = e~ u(t).

Solution: )
G =
(5) =13
Therefore,
1 s+2 1
H) =3 =" :_( s+1>
s+2

Thus,

14



Problem 5 (20 points)

A system is described by the following differential equation:
y"(t) + 5y (t) + 6y(t) = 2'(t) + 5x(t)

If the input is
z(t) = e Mu(t — 2)

find the output y(¢). Assume all initial conditions are zero.
There is additional space on the next page if needed.

Solution: Applying the Laplace trasnform to the differential equation:

s2Y (s) 4 5sY (s) + 6Y(s) = sX(s) + 5X (s)

Therefore,
s+5
Y(s)= 1> X
() s2+55+6 (5)
Now,
1
1) = e Be 42t — 2 X(s) = e 825~
z(t) =e e u( ) = X(s)=¢€"e I
Therefore,
+5 A B C
Vi(s) = e8c—28 S _ —8,—2s
(s) =ee (s+3)(s+2)(s+4) c° s+3+s—|—2+s+4
where,
$+95
A= —— — =-2
(s+2)(s+4)[=_3
s+95
B=———— =3/2
(s+3)(s+4)|,__ /
§+5
C=— —— =1/2
(s+3)(s+2) |,y /
Therefore,

y(t) =e 8 (—26_3(t_2) + 26_2(t_2) + ;6_4(t_2)> u(t —2)

15



Problem 6 (44 points)

(a) (24 points) Determine if each of the following four statements is true or false. When the
statement is false, a counter example is sufficient. If the statement is true, you must justify
your answer to receive full credit.

i. If x(t) xy(t) =0, then z(t) = 0 or y(¢) = 0.

Solution:
False: We know that:
z(t) xy(t) = X(jw)Y (jw)

Let
X (jw) = rect(w) and Y (jw) = rect(w — 2)

We then have
X(jw)Y (jw) =0

while X (jw) # 0 and Y (jw) # 0.

ii. If 2(t) « h(t) = x(t), then A(t) must be an impulse, i.e., h(t) = 6(t).

Solution:
False: We have:
z(t) * h(t) = X(jw)H (jw)

C

If 2(t) is bandlimited to +3w. and H (jw) = rect (;) , then

X(jw)H (jw) = X (jw)

However, h(t) is not an impulse.

16



iii. A signal z(¢) is bandlimited where its Fourier transform X (jw) = 0 for |w| > 27B
rad/s. The Nyquist rate of cos(4nBt)xz(t — 2) + x(2t) is 6B Hz.

Solution:
True The fourier trasnform of the given signal:

% (e’jQ(“’A"TB)X(j(w — 47 B)) 4 e P2 HTB) X (j(w + 47rB))> + %X(jw/Q)

The highest frequency component is: 67 B rad/s or 3B Hz. Therefore, the Nyquist
rate: 2(3B) = 6B Hz

17



1
iv. If z(t) = sinc(¢), then the energy of =(3t + 2) is 3

Solution:
True: Let y(¢) = x(3t + 2), then the energy of y(¢) is given by:

| k= [ )P

Now,
1 1
Y (jw) = geﬂw/?v((jw/:f,) = gej2w/3rect(w/67r)
Therefore,
1 [ 11 3 6 1
— |wme:L/1m: r_1L
27 J_ 279 J_ 3. 2r-9 3

18



(b) (10 points) If y(t) = =(t) * h(t), then show that the following identity holds:

/_Z y(t)dt = (/_Z h(t)dt) : (/_Z :z:(t)dt>

Hint: One approach is to look at the integral expression for the Fourier transform when
w = 0.

Solution:
We have
Y(jw) = H(jw) X (jw)

Therefore, if we evaluate the above equality at w = 0, we have:

Now since
oo

Y (juw) = / T et — Y (0) = / oL

—00 —00

/_Z y(t)dt = (/_Z h(t)dt) - (/_Z x(t)dt)

we conclude:

19



(¢) (10 points) An LTI system has the following impulse response: h(t) = e'u(—1 — t). Is the
system stable? Is it causal?

Solution:
Since u(—t — 1) = 1 for ¢t < —1, we have h(t) # 0 for t < 0, therefore the system is not

causal.
0 —1
/ |h(t)|dt = / eldt = e < o0
—00 t=—o0

The system is then stable.

20



BONUS (10 points)

(a) (5 points) Two LTI systems are linearly cascaded as follows:

x(t Si S2 t
2 LTI LTI u(t)

The impulse response of the first system is h1(t) = e'u(t) and the impulse response of the
second system is hy(t) = e* cos(t). What is the impulse response of the equivalent system

heq(t)?

Solution:

Since the two systems are LTI, we can switch the order so that system S, comes first and
S is the second system. Then in this case, computing h.4(t) is equivalent to compute the
output of system S to input e cos(t). To compute the output we are going to use the
eigenfunction property. We have the following:

1
Hl(S) = 5—717 Re{s} > 1

and
e cos(t) = %e@‘*‘j)t + 16(2—j)t

Therefore,

1 o |
heq(t) = 5 H1(2+§)e® + S Hi(2 — j)e®

_1 U ewp 1 1
21+ 21—

1 . 1 .
— Z(l — )e It 4 Z(l + j)e9)t

- ée% (cos(t) + sin(t))

=it

21



(b) (5 points) If Fy is the Nyquist rate of z(¢), determine in terms of Fj, the Nyquist rate of
23(t) x 22(t).

Solution:

If F; is the Nyquist rate of z(t), then the highest frequency component of x(¢) is: F,/2 and
x(t) is bandlimited to +F's/2.

Now,

V) =20) = Y(i) = 5 XG) * (=X () X))

Therefore, if =(¢) is bandlimited to £F/2, y(¢) is then bandlimited to +3F/2.

0 =) = V() = (52X () * X))

Therefore, if z(¢) is bandlimited to £F;/2, z(t) is then bandlimited to +2F;/2 or +Fj.
Now

y(t) * 2(t) = Y (jw) Z(jw)

This means that y(t) % z(¢) is bandlimited to +F's. Therefore the Nyquist rate is 2F.

22



Fourier Transform Tables

Property Signal Transform

Linearity ar (t)+Bx2(t) aX;(jw)+ 8 Xa(jw)

Duality X (¢) 21 x (—w)

Conjugate x (t) real X* (jw) = X (—jw)

symmetry Magnitude: | X (—jw)| = |X (jw)
Phase: O(—w)= -0 (w
Real part: Xy (—jw) =
Imaginary part: X; (—jw) =

Conjugate z (t) imaginary X* (jw) = =X (—jw)

antisymmetry Magnitude: | X (—jw)| = |
Phase: O (—w) = (
Real part: X, (—jw) = =X, (jw)

Even signal

0Odd signal

Time shifting
Frequency shifting
Modulation property

Time and frequency scaling

Differentiation in time

Differentiation in frequency

Convolution

Multiplication

Integration

Parseval’s theorem

x(—t) =z (t)
x(—t) = —x(t)
z(t— 1)

x (t) elwot

x (t) cos(wot)

z (at)

dn
Py [z ()]

(=5t)" « (t)

JCURE

Imaginary part: X; (—jw) =
X (jw): even
X (jw): odd

I G
o[ X G

Table 4.4 — Fourier transform properties.

Additional properties:

z(t): even and real

2(t): odd and real

x(t): even and imaginary

x(t): odd and imaginary

23

X (jw): even and real

X (jw): odd and imaginary
X (jw): even and imaginary
X (jw): odd and real

(X (j(w=wo)) + X (j(w + wo))]



Note:

4.3. Analysis of Non-Periodic Continuous-Time Signals

367

Name

Signal

Rectangular pulse
Triangular pulse
Right-sided exponential
Two-sided exponential

Signum function
Unit impulse
Sinc function

Constant-amplitude signal

Unit-step function

Modulated pulse

x (t) = Arect(t/T)

z(t) = AN (t/7)

x(t) = e Mt
z () =sgn(t)
2 () = 5 (t)

(t)=1, all ¢
1
a:(t):E
x(t) =u(t)

Transform
X (jw) = Arsinc (ﬂ)
2m
LN . 2 ﬂ)
X (jw) = Arsinc (27r
. 1
X (jw) = :
a+jw
. 2a
X(jw)= —
() a? + w?
2
X (jw) = —
() = =5
X (jw) = 1

X (jw) = rect(%)

X(jw) = 270 (w)
X (jw) = —jsen (w

)
X (jw) = 76 (w) + iw

x (t) zrect<£) cos (wot) X (J :% s1nc< ) ) +
T

(=)
—SIHC

sinc(a) = sinfwo)
e

rect(t/7) = u(t + 7/2) — u(t — 7/2)

24

Table 4.5 — Some Fourier transform pairs.



LAPLACE TRANSFORM

1. SOME LAPLACE TRANSFORM PAIRS

Signal Transform ROC
o(t) 1 All s
1
u(t) ; Re{s} >0
cos(wot)u(t) 2 ij Re{s} >0
0
sin(wot)u(t) 2 C:_OMZ Re{s} >0
0
u 1
e~ "u(t) P Re{s} > —a
—a s+ a
e~ cos(wot)u(t) Graf+a? Re{s} > —a
0
—at wo
e~ sin(wot )u(t) Grata Re{s} > —a
0
te~%u(t) ! Re{s} > —a
(s +a)?
!
t"u(t) s:ﬁ Re{s} >0

25



LAPLACE TRANSFORM

2. LAPLACE TRANSFORM PROPERTIES

Signal Transform ROC
x(t) X(s) R,
x1(t) Xi1(s) R
xa(t) Xa(s) Ry
az1(t) + bxa(t) aX1(s) + bXa(s) At least Ry N Ry
x(t — o) e st X () R,
I il
wlat), >0 () (o 15m 10 ROG 1 /0 £ )
x1(t) * x2(t) X1(s)X2(s) At least R; N Ry
/Otl‘(T)dT X£S> At least R, N {Re{s} > 0}
d
ﬁx(t) sX(s) — z(0) At least R,
d? 2 /
ﬁx(t) s°X (s) — sz(0) — 2/(0) At least R,
L (t) ~ L) R,
ds

26



