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Statistics: Mean: 80.0% (out of 100%), Standard deviation: 19.3, 25th perentile: 72.5%, Median:

84.8%, 75th percentile: 94%, Maximum score: 103.25%, Number of exams: 98

Comments:

• Regrades should be submitted if you believe we applied the rubric mistakenly. Please submit

these via Gradescope. Hawraa graded questions 1, 2, and the bonus; Shadi graded questions

3 and 4; Jonathan graded questions 5 and 6.

• You demonstrated a solid understanding of material on the final. While the detailed statistics

are above, I’d like to highlight that the median score was an 84.8% and the mean was 80%.

• Your final course grades were calculated using your exam and HW scores on Gradescope;

we subsequently added any participation bonuses. You can calculate your letter grade by

applying the scale in the syllabus. If you believe I miscalculated your final letter grade,

please send me an e-mail.
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Problem 1 (25 points)

Consider a bandlimited signal m(t), its frequency spectrum M(j!) is shown below. We modulate
m(t) with cos(!ct + ✓c), where ✓c is a constant phase but unknown:

(a) (8 points) Express Xc(j!), the Fourier transform of xc(t), in terms of M(j!). Hint: use the

fact that cos(u) =
e
ju + e

�ju

2
.

Solution:

We have:

xc(t) = m(t) cos(!ct + ✓c) = m(t)
1

2

⇣
e
j(!ct+✓c) + e

�j(!ct+✓c)
⌘

=
1

2
e
j✓cm(t)ej!ct +

1

2
e
�j✓cm(t)e�j!ct

Therefore,

Xc(j!) =
1

2
e
j✓cM(j(! � !c)) +

1

2
e
�j✓cM(j(! + !c))
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(b) (10 points) We demodulate xc(t) as follows:

Show that y(t) =
1

2
cos(✓c)m(t). Assume !c � !M .

Solution: The input of the low pass filter:

xc(t) cos(!ct)

Taking its Fourier transform, we obtain:

1

2
Xc(j(! � !c)) +

1

2
Xc(j(! + !c)) =

1

4
e
j✓cM(j(! � 2!c)) +

1

4
e
�j✓cM(j!) +

1

4
e
j✓cM(j!) +

1

4
e
�j✓cM(j(! + 2!c)) =

1

4
e
j✓cM(j(! � 2!c)) +

1

4

⇣
e
�j✓c + e

j✓c
⌘

M(j!) +
1

4
e
�j✓cM(j(! + 2!c)) =

1

4
e
j✓cM(j(! � 2!c)) +

1

2
cos(✓c)M(j!) +

1

4
e
�j✓cM(j(! + 2!c))

After the low pass-filter, the term that only remains is

1

2
cos(✓c)M(j!)

Therefore,

y(t) =
1

2
cos(✓c)m(t)
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(c) (7 points) Assume that you also know z(t) = 1

2
sin(✓c)m(t). How can you recover m(t)

from y(t) and z(t)?
Hint: cos

2(u) + sin2(u) = 1.

Solution:

To recover m(t) from z(t) and y(t), we can compute the following:

2
p

y2(t) + z2(t)

This is because:

2
p

y2(t) + z2(t) = 2

s✓
1

4
cos2(✓c)m2(t) +

1

4
sin2(✓c)m2(t)

◆
= 2

r
1

4
m2(t) = m(t)

Note: We noticed that we forgot to mention in the question that m(t) > 0. So we as-
sumed all of the following answers as correct: m(t), ±m(t), or |m(t)|. We also accepted
answers where the above operation was proposed to be done in the frequency domain, i.e.,
F�1{2

p
Y (j!)2 + Z(j!)2}. Some of you proposed the following:

2 (z(t) sin(✓c) + y(t) cos(✓c))

This method is mathematically valid, but it cannot be implemented to recover m(t) because
✓c is unknown for us, i.e., we cannot multiply z(t) or y(t) by a factor that we do not know.
However, we gave full credit for it.
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Problem 2 (41 points)

Consider the following sequence of short rect(·) pulses, denoted by p(t):

Problem 4. Pulse Amplitude Modulation and Time Division Multiplexing (30 Points)

Consider the following communication system

The message signal m(t) is multiplitied by a sequence of short rect(.) pulses. m(t) is ban-
dlimited, with a radian bandwidth 4⇡B. The rect(.) pulses are of width ⌧ , and are spaced
by T = 1/2B. These waveforms are illustrated below:

t

m(t)

t

p(t)

t

m(t)

T�

T 2T 3T�3T �2T �T 0

T 2T 3T�3T �2T �T 0

T 2T 3T�3T �2T �T 0

x(t)

At the output, the lowpass filter reconstructs the signal. Since one message only uses part
of the time, several messages can be interleaved, or multiplexed, on the same channel. This
is a fully analog version of Time Division Multiplexing, or TDM.

In this problem we’re just concerned with a single message, and whether we can retrieve it.

7

Each rect(·) pulse has width ⌧ , and the pulses are spaced by T as diagrammed above.

(a) (14 points) Find P (j!), the Fourier transform of p(t). Express P (j!) as a sum, and simplify
where possible. Hint: One approach is to write p(t) as convolution of a rect function with an
impulse train.

Solution:

We can write p(t) as follows:

p(t) = rect
✓

t

⌧

◆
⇤ �T (t)

Therefore,
P (j!) = ⌧sinc

⇣
!⌧

2⇡

⌘
· !0�!0(!)

where !0 =
2⇡

T
. Therefore,

P (j!) = ⌧sinc
⇣

!⌧

2⇡

⌘
· !0�!0(!)

= ⌧!0sinc
⇣

!⌧

2⇡

⌘ 1X

k=�1
�(! � k!0)

= ⌧!0

1X

k=�1
sinc

⇣
!⌧

2⇡

⌘
�(! � k!0)

= ⌧!0

1X

k=�1
sinc

✓
k!0⌧

2⇡

◆
�(! � k!0)
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(b) (10 points) Consider the following system:
Problem 4. Pulse Amplitude Modulation and Time Division Multiplexing (30 Points)

Consider the following communication system

�
m(t)

p(t)

Channel
x(t) H(j�) y(t)

�2�B 2�B

The message signal m(t) is multiplitied by a sequence of short rect(.) pulses. m(t) is ban-
dlimited, with a radian bandwidth 4⇡B. The rect(.) pulses are of width ⌧ , and are spaced
by T = 1/2B. These waveforms are illustrated below:

At the output, the lowpass filter reconstructs the signal. Since one message only uses part
of the time, several messages can be interleaved, or multiplexed, on the same channel. This
is a fully analog version of Time Division Multiplexing, or TDM.

In this problem we’re just concerned with a single message, and whether we can retrieve it.

7

1x(t)

where the input m(t) is multiplied with the rect pulse train, p(t). The signal m(t) is ban-
dlimited and it has the following frequency spectrum:

Assume that the rect(·) pulses are spaced by T =
1

2B
. Express the spectrum X(j!) of x(t)

in terms of M(j!).

Solution: Since x(t) = p(t)m(t), we have:

X(j!) =
1

2⇡
M(j!) ⇤ P (j!)

=
1

2⇡
M(j!) ⇤ ⌧!0

1X

k=�1
sinc

✓
k!0⌧

2⇡

◆
�(! � k!0)

=
⌧

T
M(j!) ⇤

1X

k=�1
sinc

✓
k!0⌧

2⇡

◆
�(! � k!0)

=
⌧

T

1X

k=�1
sinc

✓
k⌧

T

◆
M(j(! � k!0))

=
⌧

T

1X

k=�1
sinc

✓
k⌧

T

◆
M(j(! � k!0))

where !0 = 2⇡
T = 4⇡B rad/s.
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(c) (10 points) Sketch X(j!) for �6⇡B  !  6⇡B.

Note that sinc(0) = 1.
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(d) (7 points) Find the spectrum of the signal at the output of the lowpass filter Y (j!), i.e.,
find an expression of Y (j!) in terms of M(j!).

Solution: After the low pass filter, we have:

Y (j!) =
⌧

T
M(j!)
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Problem 3 (30 points)

An LTI system S is cascaded in series with two other non-LTI systems as follows:

The system S1 is given by:

w(t) = x

✓
t

2

◆

And the system S2 is:
y(t) = z(2t)

The system S has H(j!) as its frequency response.

(This question continues on the next page.)
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(a) (15 points) Find how Y (j!) is related to X(j!), in terms of H(j!). Deduce the overall

frequency response Heq(j!) =
Y (j!)

X(j!)
.

Solution:

We have:

w(t) = x

✓
t

2

◆
! W (j!) = 2X(j2!)

z(t) = h(t) ⇤ w(t) ! Z(j!) = H(j!)W (j!)

y(t) = z(2t) ! Y (j!) =
1

2
Z

⇣
j
!

2

⌘

Therefore,

Y (j!) =
1

2
Z

⇣
j
!

2

⌘
=

1

2
H

⇣
j
!

2

⌘
W

⇣
j
!

2

⌘
= H

⇣
j
!

2

⌘
X (j!)

Therefore,
Heq(j!) = H

⇣
j
!

2

⌘
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(b) (15 points) If H(j!) is given by:

H(j!) =
2a � j!

2a + j!

where a > 0, find the impulse response h(t) of the system S. Deduce the overall impulse
response heq(t).

Solution: We have:
H(j!) =

2a

2a + j!
� j!

2a + j!

Therefore,

h(t) = 2ae
�2at

u(t)� d

dt

�
e
�2at

u(t)
�

= 2ae
�2at

u(t)�
�
�2ae

�2at
u(t) + �(t)

�
= 4ae

�2at
u(t)��(t)

Since Heq(j!) = H
�
j
!
2

�
, we have:

heq(t) = 2h(2t) = 8ae
�4at

u(2t) � 2�(2t) = 8ae
�4at

u(t) � �(t)
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Problem 4 (40 points)

Consider the following system:

(a) (10 points) Find the transfer function H1(s) of the system that maps v(t) to y(t).

Solution:

Y (s) = H(s)(V (s) � Y (s)) =) Y (s)

V (s)
=

H(s)

1 + H(s)

Therefore,

H1(s) =
H(s)

1 + H(s)
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(b) (5 points) Find the overall transfer function Heq(s).

Solution:

Heq(s) = G(s)H1(s) = G(s)
H(s)

1 + H(s)

(c) (10 points) How can we choose H(s) in terms of G(s) so that the overall system has the
following impulse response heq(t) = �(t)?

Solution:

heq(t) = �(t) ! Heq(s) = 1

Thus, we need to have:

G(s)
H(s)

1 + H(s)
= 1 =) G(s)H(s) = 1 + H(s) =) H(s) =

1

G(s) � 1

13



(d) (15 points) Using the relation you found in part (c), find h(t) if g(t) = e
�2t

u(t).

Solution:

G(s) =
1

s + 2

Therefore,

H(s) =
1

1

s+2
� 1

= �s + 2

s + 1
= �

✓
1 +

1

s + 1

◆

Thus,
h(t) = ��(t) � e

�t
u(t)
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Problem 5 (20 points)

A system is described by the following differential equation:

y
00(t) + 5y

0(t) + 6y(t) = x
0(t) + 5x(t)

If the input is
x(t) = e

�4t
u(t � 2)

find the output y(t). Assume all initial conditions are zero.

There is additional space on the next page if needed.

Solution: Applying the Laplace trasnform to the differential equation:

s
2
Y (s) + 5sY (s) + 6Y (s) = sX(s) + 5X(s)

Therefore,

Y (s) =
s + 5

s2 + 5s + 6
X(s)

Now,

x(t) = e
�8

e
�4(t�2)

u(t � 2) =) X(s) = e
�8

e
�2s 1

s + 4

Therefore,

Y (s) = e
�8

e
�2s s + 5

(s + 3)(s + 2)(s + 4)
= e

�8
e
�2s

✓
A

s + 3
+

B

s + 2
+

C

s + 4

◆

where,

A =
s + 5

(s + 2)(s + 4)

����
s=�3

= �2

B =
s + 5

(s + 3)(s + 4)

����
s=�2

= 3/2

C =
s + 5

(s + 3)(s + 2)

����
s=�4

= 1/2

Therefore,

y(t) = e
�8

✓
�2e

�3(t�2) +
3

2
e
�2(t�2) +

1

2
e
�4(t�2)

◆
u(t � 2)
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Problem 6 (44 points)

(a) (24 points) Determine if each of the following four statements is true or false. When the
statement is false, a counter example is sufficient. If the statement is true, you must justify
your answer to receive full credit.

i. If x(t) ⇤ y(t) = 0, then x(t) = 0 or y(t) = 0.

Solution:

False: We know that:
x(t) ⇤ y(t) ! X(j!)Y (j!)

Let
X(j!) = rect(!) and Y (j!) = rect(! � 2)

We then have
X(j!)Y (j!) = 0

while X(j!) 6= 0 and Y (j!) 6= 0.

ii. If x(t) ⇤ h(t) = x(t), then h(t) must be an impulse, i.e., h(t) = �(t).

Solution:

False: We have:
x(t) ⇤ h(t) ! X(j!)H(j!)

If x(t) is bandlimited to ±1

2
!c and H(j!) = rect

✓
!

2!c

◆
, then

X(j!)H(j!) = X(j!)

However, h(t) is not an impulse.
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iii. A signal x(t) is bandlimited where its Fourier transform X(j!) = 0 for |!| > 2⇡B

rad/s. The Nyquist rate of cos(4⇡Bt)x(t � 2) + x(2t) is 6B Hz.

Solution:

True The fourier trasnform of the given signal:

1

2

⇣
e
�j2(!�4⇡B)

X(j(! � 4⇡B)) + e
�j2(!+4⇡B)

X(j(! + 4⇡B))
⌘

+
1

2
X(j!/2)

The highest frequency component is: 6⇡B rad/s or 3B Hz. Therefore, the Nyquist
rate: 2(3B) = 6B Hz

17



iv. If x(t) = sinc(t), then the energy of x(3t + 2) is
1

3
.

Solution:

True: Let y(t) = x(3t + 2), then the energy of y(t) is given by:
Z 1

�1
|y(t)|2dt =

1

2⇡

Z 1

�1
|Y (j!)|2d!

Now,

Y (j!) =
1

3
e
j2!/3

X(j!/3) =
1

3
e
j2!/3rect(!/6⇡)

Therefore,
1

2⇡

Z 1

�1
|Y (j!)|2d! =

1

2⇡

1

9

Z
3⇡

�3⇡
1d! =

6⇡

2⇡ · 9
=

1

3

18



(b) (10 points) If y(t) = x(t) ⇤ h(t), then show that the following identity holds:
Z 1

�1
y(t)dt =

✓Z 1

�1
h(t)dt

◆
·
✓Z 1

�1
x(t)dt

◆

Hint: One approach is to look at the integral expression for the Fourier transform when
! = 0.

Solution:

We have
Y (j!) = H(j!)X(j!)

Therefore, if we evaluate the above equality at ! = 0, we have:

Y (0) = H(0)X(0)

Now since
Y (j!) =

Z 1

�1
y(t)e�j!t

dt =) Y (0) =

Z 1

�1
y(t)dt

we conclude: Z 1

�1
y(t)dt =

✓Z 1

�1
h(t)dt

◆
·
✓Z 1

�1
x(t)dt

◆

19



(c) (10 points) An LTI system has the following impulse response: h(t) = e
t
u(�1 � t). Is the

system stable? Is it causal?

Solution:

Since u(�t � 1) = 1 for t  �1, we have h(t) 6= 0 for t < 0, therefore the system is not
causal.

Z 1

�1
|h(t)|dt =

Z �1

t=�1
e
t
dt = e

�1
< 1

The system is then stable.
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BONUS (10 points)

(a) (5 points) Two LTI systems are linearly cascaded as follows:

The impulse response of the first system is h1(t) = e
t
u(t) and the impulse response of the

second system is h2(t) = e
2t cos(t). What is the impulse response of the equivalent system

heq(t)?

Solution:

Since the two systems are LTI, we can switch the order so that system S2 comes first and
S1 is the second system. Then in this case, computing heq(t) is equivalent to compute the
output of system S1 to input e

2t cos(t). To compute the output we are going to use the
eigenfunction property. We have the following:

H1(s) =
1

s � 1
, Re{s} > 1

and
e
2t cos(t) =

1

2
e
(2+j)t +

1

2
e
(2�j)t

Therefore,

heq(t) =
1

2
H1(2 + j)e(2+j)t +

1

2
H1(2 � j)e(2�j)t

=
1

2

1

1 + j
e
(2+j)t +

1

2

1

1 � j
e
(2�j)t

=
1

4
(1 � j)e(2+j)t +

1

4
(1 + j)e(2�j)t

=
1

2
e
2t (cos(t) + sin(t))
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(b) (5 points) If Fs is the Nyquist rate of x(t), determine in terms of Fs, the Nyquist rate of
x
3(t) ⇤ x

2(t).

Solution:

If Fs is the Nyquist rate of x(t), then the highest frequency component of x(t) is: Fs/2 and
x(t) is bandlimited to ±Fs/2.
Now,

y(t) = x
3(t) =) Y (j!) =

1

2⇡
X(j!) ⇤

✓
1

2⇡
X(j!) ⇤ X(j!)

◆

Therefore, if x(t) is bandlimited to ±Fs/2, y(t) is then bandlimited to ±3Fs/2.

z(t) = x
2(t) =) Y (j!) =

✓
1

2⇡
X(j!) ⇤ X(j!)

◆

Therefore, if x(t) is bandlimited to ±Fs/2, z(t) is then bandlimited to ±2Fs/2 or ±Fs.
Now

y(t) ⇤ z(t) ! Y (j!)Z(j!)

This means that y(t) ⇤ z(t) is bandlimited to ±Fs. Therefore the Nyquist rate is 2Fs.
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Fourier Transform Tables

366 4. Fourier Analysis for Continuous-Time Signals and Systems

The right side of Eqn. (4.295) is the function the Fourier transform of which we are seeking.
We also know from Eqn. (4.279) that

F {x (t) ⇤ u (t)} = X (!) U (!) (4.296)

Thus we have

F
⇢ˆ t

�1
x(�) d�

�
= ⇡ X (!) � (!) +

X (!)

j!
(4.297)

Using the sampling property of the impulse function, Eqn. (4.297) becomes

F
⇢ˆ t

�1
x(�) d�

�
= ⇡ X (0) � (!) +

X (!)

j!
(4.298)

Table 4.4 contains a summary of key properties of the Fourier transform. Table 4.5 lists
some of the fundamental Fourier transform pairs.

Property Signal Transform
Linearity ↵ x1 (t) + � x2 (t) ↵ X1�(j!) + � � X2�(j!)
Duality X (t)
Conjugate x (t) real

⇡ x (�2 !)
X

⇤�(j!) = � X�(�j!)
symmetry Magnitude:

Phase:
Real part:

|X�(�j!)|�=�|X�(j!)|
⇥�(�!) = � �⇥ � (!)�
Xr�(�j!) = � Xr�(j!)

Conjugate x (t) imaginary
Imaginary�part:�Xi�(�j!) = � �Xi�(j!)�

X
⇤�(j!) = �X�(�j!)

antisymmetry Magnitude:
Phase:
Real part:

|X�(�j!)|�=�|X�(j!)|
⇥�(�!) = � �⇥ � (!)�⌥�⇡�
Xr�(�j!) = � �Xr�(j!)

Even signal x (�t) = x (t)
Odd signal x (�t) = �x (t)
Time shifting x(t � ⌧)
Frequency shifting x (t) e

j!0t

Imaginary�part:�Xi�(�j!) = � Xi�(j!)�
X�(j!): even
X�(j!): odd
X�(j!)�e�j!⌧

X�(j(!���!0)

Modulation property x (t) cos(!0t) 1

2 [X�(j(!���!0) )+ �X�(j(!�+�!0))]

Time and frequency scaling x (at)
1

|a| X

⇣
j!
a

⌘

Di↵erentiation in time
d

n

dtn
[x (t)] (j!)n�

X�(j!)

Di↵erentiation in frequency (�jt)n x (t)
d

n

[X�(j!)]

Convolution x1 (t) ⇤ x2 (t)
d!n

X1�(j!)�X2�(j!)

Multiplication x1 (t) x2 (t)
1

2⇡
X1�(j!)�⇤�X2�(j!)

Integration

ˆ t

�1
x(�) d�

X�(j!)
j!

+ ⇡ X(0) � (!)

Parseval’s theorem

ˆ 1

�1
|x (t)|2 dt =

1

2⇡

ˆ 1

�1
|X�(j!)|2�d!

Table 4.4 – Fourier transform properties.

x(t): even and real

x(t): odd and real

x(t): even and imaginary

x(t): odd and imaginary

X�(j!): even and real

X�(j!): odd and imaginary

X�(j!): even and imaginary

X�(j!): odd and real

Additional properties:
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4.3. Analysis of Non-Periodic Continuous-Time Signals 367

Name Signal Transform

Rectangular pulse x (t) = A rect( t/⌧) X�(j!) = � A⌧�sinc
⇣

!⌧

2⇡

⌘

Triangular pulse x (t) = A⇤ (t/⌧) X�(j!) = � A⌧�sinc2
⇣

!⌧

2⇡

⌘

Right-sided exponential x (t) = e
�at

u (t) X�(j!) =
1

a + j!

Two-sided exponential x (t) = e
�a|t| X�(j!) = 2a

a2 + !2

Signum function x (t) = sgn (t) X�(j!) =
2

j!

Unit impulse x (t) = � (t) X�(j!) = � 1

Sinc function x (t) = sinc (t) X�(j!) =
⇣

!

2⇡

⌘

Constant-amplitude signal x (t) = 1, all t (j!) =X 2⇡ � (!)

x (t) =
1

⇡t
X�(j!) = � �j�sgn�(!)

Unit-step function x (t) = u (t) X�(j!) = ⇡ � (!) + 1
j!

Modulated pulse x (t) =

✓
t

⌧

◆
cos (!0t) X�(j!) =

⌧

2
sinc

✓
(! � !0) ⌧

2⇡

◆
+

⌧

2
sinc

✓
(! + !0) ⌧

2⇡

◆

Table 4.5 – Some Fourier transform pairs.

4.3.6 Applying Fourier transform to periodic signals

In developing frequency-domain analysis methods in the previous sections of this chapter
we have distinguished between periodic and non-periodic continuous-time signals. Periodic
signals were analyzed using various forms of the Fourier series such as TFS, EFS or CFS.
In contrast, Fourier transform was used for analyzing non-periodic signals. While this
distinction will be appropriate when we work with one type of signal or the other, there
may be times when we need to mix periodic and non-periodic signals within the same
system. An example of this occurs in amplitude modulation where a non-periodic message
signal may be multiplied with a periodic carrier signal. Another example is the use of a
periodic signal as input to a system the impulse response of which is non-periodic. In such
situations it would be convenient to use the Fourier transform for periodic signals as well.
In general a periodic signal is a power signal that does not satisfy the existence conditions
for the Fourier transform. It is neither absolute integrable nor square integrable. On the
other hand, we have seen in Example 4.20 that a Fourier transform can be found for a
constant-amplitude signal that does not satisfy the existence conditions, as long as we are
willing to accept singularity functions in the transform. The next two examples will expand
on this idea. Afterwards we will develop a technique for converting the EFS representation

rect

rect

Note:
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LAPLACE TRANSFORM

1. Some Laplace transform pairs

Signal Transform ROC

�(t) 1 All s

u(t)
1

s
Re{s} > 0

cos(!0t)u(t)
s

s2 + !
2
0

Re{s} > 0

sin(!0t)u(t)
!0

s2 + !
2
0

Re{s} > 0

e
�at

u(t)
1

s + a
Re{s} > �a

e
�at cos(!0t)u(t)

s + a

(s + a)2 + !
2
0

Re{s} > �a

e
�at sin(!0t)u(t)

!0

(s + a)2 + !
2
0

Re{s} > �a

te
�at

u(t)
1

(s + a)2
Re{s} > �a

t
n
u(t)

n!

sn+1
Re{s} > 0

1
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2 LAPLACE TRANSFORM

2. Laplace transform properties

Signal Transform ROC

x(t) X(s) Rx

x1(t) X1(s) R1

x2(t) X2(s) R2

ax1(t) + bx2(t) aX1(s) + bX2(s) At least R1 \ R2

x(t � t0) e
�st0X(s) Rx

e
s0tx(t) X(s � s0)

Shifted version of Rx

(s is in the ROC if s � s0 2 Rx)

x(at), a > 0
1

a
X

⇣
s

a

⌘ Scaled version of Rx

(s is in the ROC if s/a 2 Rx)

x1(t) ⇤ x2(t) X1(s)X2(s) At least R1 \ R2

Z t

0

x(⌧)d⌧
X(s)

s
At least Rx \ {Re{s} > 0}

d

dt
x(t) sX(s) � x(0) At least Rx

d
2

dt2
x(t) s

2
X(s) � sx(0) � x

0(0) At least Rx

tx(t) � d

ds
X(s) Rx
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