Signals and Systems

Final Exam Solutions December 11, 2013

Problem 1 (10 points) Three independent questions on convolution.

(a) (4 points) Clearly draw the signal $y(t) = x_1(t) \star x_2(t)$, where

$$
x_1(t) = \begin{cases} t & 0 \le t < 1 \\ 0 & \text{otherwise} \end{cases}
$$

and

$$
x_2(t) = \begin{cases} 1 & 0 \le t < 1 \\ 2 & 3 \le t < 4 \\ 0 & \text{otherwise} \end{cases}
$$

(b) (3 points) Convolution with the unit step function

$$
u(t) = \begin{cases} 1, & t > 0, \\ 0, & t \le 0. \end{cases}
$$

can be used as an integrator. In particular, prove that if $f(t)$ is a causal signal, then

$$
\int_0^t f(y) dy = (u \star f)(t).
$$

(c) (3 points) If $h = f \star g$ show that

$$
\int_{-\infty}^{\infty} h(x) dx = \left(\int_{-\infty}^{\infty} f(x) dx \right) \left(\int_{-\infty}^{\infty} g(x) dx \right).
$$

Informally, areas multiply under convolution.

Solution:

(a) Let

$$
s_1(t) = \begin{cases} 1 & 0 \le t < 1 \\ 0 & \text{otherwise} \end{cases}
$$

Then

$$
r_1(t) = x_1(t) \star s_1(t) = \begin{cases} \int_0^t (t - \tau) d\tau = \frac{t^2}{2} & 0 \le t < 1\\ \int_{t-1}^1 (t - \tau) d\tau = t - \frac{t^2}{2} & 1 \le t < 2 \end{cases}
$$

Similarly, let

$$
s_2(t) = \begin{cases} 2 & 3 \le t < 4 \\ 0 & \text{otherwise} \end{cases}
$$

Then

$$
r_2(t) = x_1(t) \star s_2(t) = 2[r_1(t-3)]
$$

Therefore,

$$
y(t) = r_1(t) + 2[r_1(t-3)]
$$

(b) Since $f(t)$ is causal, $f(t) = f(t)u(t)$. Using the definition of convolution

$$
(u * f) (t) = \int_{-\infty}^{\infty} f(y) u(y) u (t - y) dy
$$

$$
= \int_{0}^{\infty} f(y) u (t - y) dy
$$

$$
= \int_{0}^{t} f(y) dy
$$

(c) Take the Fourier transform of $h = f * g$ to get $H(\omega) = F(\omega)G(\omega)$ and evaluate at $\omega = 0$:

$$
\int_{-\infty}^{\infty} h(x) dx = H(0) = F(0) G(0) = \left(\int_{-\infty}^{\infty} f(x) dx \right) \left(\int_{-\infty}^{\infty} g(x) dx \right).
$$

Problem 2 (10 points)

Let $f(t)$ be a periodic signal of period 1. One says that $f(t)$ has half-wave symmetry if

$$
f(t-\frac{1}{2})=-f(t).
$$

- (a) Does $f(t) = \sin(2\pi t) + \sin(4\pi t)$ have half-wave symmetry? Find its Fourier series.
- (b) If $f(t)$ has period 1, has half-wave symmetry and its Fourier series representation is

$$
f(t) = \sum_{n = -\infty}^{\infty} c_n e^{2\pi i nt}.
$$

Show that $c_n = 0$ if *n* is even. Hint: $-c_n = \int_0^1$ 0 $e^{-2\pi int}f(t) dt = \int_0^1$ 0 $e^{-2\pi int}f(t-\frac{1}{2})$ 2 $\int dt$.

Solution:

(a)

$$
\sin(2\pi(t-\frac{1}{2})) + \sin(4\pi(t-\frac{1}{2})) = \sin(2\pi t - \pi) + \sin(4\pi t - 2\pi)
$$

$$
= -\sin 2\pi t + \sin 4\pi t
$$

$$
\neq -f(t)
$$

Therefore, $f(t)$ does not have half-wave symmetry.

$$
f(t) = \frac{1}{i2}e^{i2\pi t} - \frac{1}{i2}e^{-i2\pi t} + \frac{1}{i2}e^{i4\pi t} - \frac{1}{i2}e^{-i4\pi t}
$$

(b) The hint says

$$
-c_n = -\int_0^1 e^{-2\pi int} f(t) dt = \int_0^1 e^{-2\pi int} f(t - \frac{1}{2}) dt.
$$

We make a change of variable $u = t - \frac{1}{2}$ $\frac{1}{2}$ in the second integral:

$$
\int_0^1 e^{-2\pi int} f(t - \frac{1}{2}) dt = \int_{-1/2}^{1/2} e^{-2\pi i n(u + \frac{1}{2})} f(u) du
$$

=
$$
\int_{-1/2}^{1/2} e^{-2\pi i n u} e^{-2\pi i n \frac{1}{2}} f(u) du
$$

=
$$
e^{-\pi i n} \int_{-1/2}^{1/2} e^{-2\pi i n u} f(u) du
$$

 $= e^{-\pi i n} c_n$, (because we can integrate over any cycle to compute c_n).

Thus

$$
-c_n = e^{-\pi i n} c_n \, .
$$

If *n* is even then $e^{-\pi in} = 1$ and we have

$$
-c_n=c_n,
$$

hence

$$
c_n=0\,.
$$

A slightly different route to the same end is as follows. Again it uses the substitution $u = t - \frac{1}{2}$ $\frac{1}{2}$ in an integral.

$$
c_n = \int_0^1 e^{-2\pi int} f(t) dt
$$

= $\int_0^{1/2} e^{-2\pi int} f(t) dt + \int_{1/2}^1 e^{-2\pi int} f(t) dt$
= $\int_0^{1/2} e^{-2\pi int} f(t) dt - \int_{1/2}^1 e^{-2\pi int} f(t - \frac{1}{2}) dt$
= $\int_0^{1/2} e^{-2\pi int} f(t) dt - \int_0^{1/2} e^{-2\pi in(u + \frac{1}{2})} f(u) du$
= $\int_0^{1/2} e^{-2\pi int} f(t) dt - e^{-\pi in} \int_0^{1/2} e^{-2\pi inu} f(u) du$,

and if n is even the integrals cancel, giving $c_n = 0$.

Problem 3 (10 points) Three independent questions on finding Fourier transforms.

(a) (2 points) In communications theory the *analytic signal* $f_a(t)$ of a signal $f(t)$ is defined, via the Fourier transform, by

$$
F_a(\omega) = \begin{cases} F(\omega), & \omega \ge 0, \\ 0, & \text{otherwise} \end{cases}
$$

where $F_a(\omega)$ is the Fourier transform of $f_a(t)$ and $F(\omega)$ is the Fourier transform of $f(t)$. For a real-valued signal $f(t)$, that is not identically zero, could the corresponding analytic signal $f_a(t)$ also be real? Why or why not?

- (b) (4 points) Compute the Fourier transform of $f(x) = \cos(\pi x) \Pi(x)$, which is a half-cycle of a cosine, and $\Pi(x) = u(x + \frac{1}{2})$ $(\frac{1}{2}) - u(x - \frac{1}{2})$ $(\frac{1}{2})$.
- (c) (4 points) The duality theorem states that that if $h(t)$ has Fourier transform $H(\omega)$, then $H(-t)$ has Fourier transform $2\pi h(\omega)$. For example, if $h(t) = \delta(t)$ then $H(\omega) = 1$ implies that $H(-t) = 1$ has Fourier transform $h(\omega) = 2\pi \delta(\omega)$. Use the duality theorem to find the inverse Fourier transform $f(t)$ of the signal in the following figure.

Solution:

- (a) No, the signal cannot be real, unless it is identically zero. If $f_a(t)$ were real then its Fourier transform would have the property that $F_a(-\omega) = \overline{F_a(\omega)}$, but we are told that $F_a(\omega) = 0$ for $\omega < 0$.
- (b) We can do this directly from the definition:

$$
F(\omega) = \int_{-1/2}^{1/2} \cos(\pi x) e^{-i\omega x} dx
$$

=
$$
\int_{-1/2}^{1/2} \frac{e^{\pi i x} + e^{-\pi i x}}{2} e^{-i\omega x} dx
$$

=
$$
\frac{1}{2} \int_{1/2}^{1/2} e^{-ix(\omega - \pi)} + e^{-ix(\omega + \pi)} dx.
$$

Integration then yields

$$
F(\omega) = \frac{2\pi \cos(\omega/2)}{\pi^2 - \omega^2}.
$$

Alternatively, using the convolution theorem

$$
\mathcal{F}(\cos(\pi x)\Pi(x)) = \frac{1}{2\pi}\mathcal{F}(\cos \pi x) \star \mathcal{F}\Pi(x)
$$

\n
$$
= \frac{\pi}{2\pi}(\delta(\omega - \pi) + \delta(\omega + \pi)) \star \operatorname{sinc}\left(\frac{\omega}{2}\right)
$$

\n
$$
= \frac{1}{2}\left(\operatorname{sinc}\left(\frac{\omega - \pi}{2}\right) + \operatorname{sinc}\left(\frac{\omega + \pi}{2}\right)\right)
$$

\n
$$
= \frac{\sin\left(\frac{\omega - \pi}{2}\right)}{\omega - \pi} + \frac{\sin\left(\frac{\omega + \pi}{2}\right)}{\omega + \pi}
$$

\n
$$
= \frac{2\pi \cos\left(\frac{\omega}{2}\right)}{\pi^2 - \omega^2}.
$$

(c) $F(\omega) = u(-\omega + 2)$. We know that the Fourier transform of the unit step is

$$
\mathcal{F}u(t) = \pi \delta(\omega) + \frac{1}{i\omega}.
$$

By the shift theorem,

$$
\mathcal{F}u(t+2) = e^{i2\omega} \left(\pi \delta(\omega) + \frac{1}{i\omega} \right).
$$

By duality,

$$
f(t) = \mathcal{F}^{-1}(u(-\omega + 2)) = \frac{e^{i2t}}{2\pi} \left(\pi \delta(t) + \frac{1}{it}\right) = \frac{\delta(t)}{2} + \frac{e^{i2t}}{2\pi it}.
$$

Problem 4 (10 points) Fourier transform values from a graph.

The function $F(\omega)$ sketched below is the Fourier transform of an unknown function $f(x)$:

Evaluate the following integrals. Your answers should be numbers, not functions!

1.
$$
\int_{-\infty}^{\infty} f(x) dx
$$

\n2.
$$
\int_{-\infty}^{\infty} f(x) e^{-2\pi ix} dx
$$

\n3.
$$
\int_{-\infty}^{\infty} f(x) e^{4\pi ix} dx
$$

\n4.
$$
\int_{-\infty}^{\infty} f(x) \cos(2\pi x) dx
$$

\n5.
$$
\int_{-\infty}^{\infty} f(x) \cos(2\pi x) e^{2\pi ix} dx
$$

Solution:

1.
$$
\int_{-\infty}^{\infty} f(x) dx = F(0) = 2
$$

2.

$$
\int_{-\infty}^{\infty} f(x)e^{-2\pi ix} dx = F(2\pi) = 1
$$

3.

$$
\int_{-\infty}^{\infty} f(x)e^{4\pi ix} dx = F(-4\pi) = 1
$$

4.

$$
\int_{-\infty}^{\infty} f(x) \cos(2\pi x) dx
$$

=
$$
\frac{1}{2} \left(\int_{-\infty}^{\infty} f(x) e^{2\pi i x} dx + \int_{-\infty}^{\infty} f(x) e^{-2\pi i x} dx \right)
$$

=
$$
\frac{F(-2\pi) + F(2\pi)}{2}
$$

= 2

5.

$$
\int_{-\infty}^{\infty} f(x) \cos(2\pi x) e^{2\pi ix} dx
$$
\n
$$
= \frac{1}{2} \left(\int_{-\infty}^{\infty} f(x) e^{2\pi ix} e^{2\pi ix} dx + \int_{-\infty}^{\infty} f(x) e^{-2\pi ix} e^{2\pi ix} dx \right)
$$
\n
$$
= \frac{F(-4\pi) + F(0)}{2}
$$
\n
$$
= \frac{3}{2}
$$

Problem 5 (10 points)

Consider the system depicted in the following block diagram.

- (1 points) Write the input-output equations that describe this system.
- (3 points) Is this system linear? time invariant?
- (3 points) Find the impulse response.
- (3 points) Is this system stable? causal?

Solution:

•

$$
y(t) = \frac{d}{dt} \int_{-\infty}^{t-1} x(\tau) d\tau + \int_{t-2}^{\infty} x(\tau) d\tau = x(t-1) + \int_{t-2}^{\infty} x(\tau) d\tau
$$

- The system is linear and time invariant because all of the subsystems are linear and time invariant.
- •

$$
h(t) = \delta(t - 1) + u(2 - t)
$$

• Since \int_{0}^{∞} −∞ $|h(t)| dt$ is not finite, the system is not stable. Since $h(t) \neq 0$ for some $t < 0$, the system is not causal.

Problem 6 (10 points)

The function g_h , $h > 0$, is defined as the average of the function f by

$$
g_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(y) dy.
$$

Find the Fourier transform $G_h(\omega)$ in terms of $F(\omega)$.

Hint: Make a change of variable $y = x - v$ to write $g_h(x)$ as a convolution.

Solution:

If we change variables in the integral according to the hint, $y + u = x$, then $y = x - u$, $dy = -du$ and as y goes from $x - h$ to $x + h$ u goes from h to $-h$. Thus

$$
g_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(y) \, dy
$$

= $\frac{1}{2h} \int_{h}^{-h} f(x-u)(-du)$
= $\frac{1}{2h} \int_{-h}^{h} f(x-u) \, dy$

Now this can be written as an integral from $-\infty$ to ∞ if we cut off with Π_{2h} , i.e.

$$
g_h(x) = \frac{1}{2h} \int_{-h}^{h} f(x - u) dy
$$

=
$$
\frac{1}{2h} \int_{-\infty}^{\infty} \Pi_{2h}(u) f(x - u) du
$$

=
$$
\frac{1}{2h} (\Pi_{2h} \star f)(x)
$$

Now we take the Fourier transform using the convolution theorem.

$$
G_h(\omega) = \frac{1}{2h} \mathcal{F}(\Pi_{2h} \star f)(\omega)
$$

$$
= \frac{1}{2h} \frac{\sin(h\omega)}{\omega/2} F(\omega)
$$