Total: 15 points ## EE102: Signals and Systems Midterm Exam 8:05 am - 9:35 am, October 23, 2017 NAME: Alex Gilbert UID: 904-770-190 This exam has 3 problems, for a total of 15 points. Closed book. No calculators. No electronic devices. One page, letter-size, one-side cheat-sheet allowed. Answer the questions in the space provided below each problem. If you run out of room for an answer, continue on the back of the page or use the extra pages at the end. Please, write your name and UID on the top of each loose sheet! GOOD LUCK! | Problem | Points | Total Points | |---------|--------|--------------| | .1 | 4 | 5 | | 2 | 4.5 | 5 | | 3 | 5 | 5 | | Total | 13.5 | 15 | Extra Pages: _____ To fill in, in case extra sheets are used apart from what is provided. Note: Answers without justification will not be awarded any marks. ## Problem 1(5 points) The following questions are not related to each other. - 1. In the following expressions, * stands for the convolution operation, u(t) is the unit step function and $\delta(t)$ is the delta function. - (a) Simplify $\frac{du(t)}{dt} * (te^{-6|t+1|}\delta(t-3))$. - (b) Calculate $\int_{-\infty}^{\infty} f(t)g(t) dt$ with f(t) = u(t+3) and g(t) = u(-t+5). - (c) Calculate y(0), where $y(t) = x_1(t) * x_2(t)$, $x_1(t) = u(t-3) u(t-1)$ and $x_2(t) = u(t-3) u(t-1)$ $\delta(-2-t)$. - 2. Consider the signal $$x(t) = u(t-3)$$ and the signal $$y(t) = \begin{cases} x(t) & \text{if } t \ge 0.5 \\ -x(-t) & \text{otherwise} \end{cases}.$$ Is the signal y(t) even or odd or neither? Justify your answer. Is the signal $$y(t)$$ even or odd or neither? Justify your answer. $$\frac{du(t)}{dt} * (te^{6|th|} \delta(t-3)) = \delta(t) * (te^{6|th|} \delta(t-3)) = (te^{6|th|} \delta(t-3)) * \delta(t)$$ $$= te^{-6|th|} \delta(t-3) = (3) e^{-6|(3)h|} \delta(t-3) = 3e^{-24} \delta(t-3) = \frac{3}{24} \delta(t-3)$$ identity property of the dulta :. $$f(t)g(t) = \begin{cases} 10 & 70 & 2 & -3 \\ 1 & -3 & 2 & 4 & 5 \\ 0 & 5 & 2 & 4 & 4 \end{cases}$$ $$f(t)g(t)dt = \int_{-\infty}^{\infty} f(t)g(t)dt + \int_{-\infty}^{\infty$$ $$\frac{-3}{(-3)} = \frac{-3}{(+3)} = \frac{1}{(+3)} + \frac{1}{(+2)} + \frac{1}{(+2)} = \frac{1}{(+3)} + \frac{1}{(+2)} + \frac{1}{(+2)} = \frac{1}{(+3)} + \frac{1}{(+2)} + \frac{1}{(+2)} + \frac{1}{(+2)} = \frac{1}{(+3)} + \frac{1}{(+2)} \frac$$ $$C- g(t) = \left[u(t-3) - u(t-1)\right] * J(-2-t) = \left[u(t-3) - u(t-1)\right] * J(t+2) = u(t-3) * J(t+2) - u(t-1) * J(t+2)$$ $$= u(t) * J(t-3) * J(t+2) - u(t) * J(t-1) * J(t+1) J($$ (2) $$a - x(t) = \begin{cases} u(t-3) & y(t) = \begin{cases} x(t) & t \ge \frac{1}{2} \\ -x(-t) & otherwise \end{cases}$$ $$y(t) = \begin{cases} u(t-3) & t \ge \frac{1}{2} & u(t-3) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\ 0 & t \le 3 \end{cases} & \vdots & y(t) = \begin{cases} 1 & 3 \le t \\$$ ## Problem 2 (5 points) The following questions are not related. - 1. A LTI system has impulse response $h(t) = 3\frac{d}{dt}\delta(t) + 3\delta(t+1)$, where $\delta(t)$ is the delta function. Can you write input-output equations that describe this system? - 2. A LTI system, when the input is an unknown x(t), outputs the y(t) that is depicted in Fig. 1. Assume now that the input is $x_1(t)$ with corresponding output $y_1(t)$, and we know that $x_1(t) = 2x(t-1) + x(t+3)$. Calculate what is $y_1(5)$. Figure 1: Response y(t) for input x(t) 3. A system is described as depicted in Fig. 2, where is the Delay operator time shifts the input signal with the specified amount, and the Flip operator does the time reversal across Y-axis. Is this system causal? What about BIBO stability? Figure 2: System for Problem 2(3). 2) XX 15 BIT 2 02(4) System is LTI: and Ax(t) + Bx(t) -> Ay(t) + By(ct) AND x(t-to) -> y(t-to) "- if x(t) = 2x(t-1) + x(t+3) $y_1(t) = 2y(t-1) + y(t+3)$:. y.(5) = 2 y(4) + y(8) = 2[3] + [3] = 9 (3) See figure: shows y(+) = x(+-2) + x(-t) for y(-2) on n(2). i.e. on any time in the future ... i. the system is count causal Note des delay & reflection one LTI is som of system is LTI. Reflection is since S(+2) + S(-t) =0 for all teo, system is comful not LT] Also if y(+)= x(+-2) + x(-t) = if |x(+)| L A * t, (, yhun (x(m) + x(n)) < B= QA + tan & n ? m=t-2 & n=-t : [ryztm is B1B0] Also Afine LTI, 00 [S(t-2) + S(-t)) lt = | S(+2) lt + | S(+) lt -00 ,= 2 100 . 3130 tas system is not LTT (D $x(t) \cdot h(t) = x(t) \cdot 3 \frac{1}{4t} + (t) + x(t) = x(t) \cdot 3 \frac{1}{4t} + (t) + 3 \times (t+1)$ $= x(t) \cdot 3 \frac{1}{4t} + 5(t) + 3 \times (t+1)$ $= x(t) \cdot (t+$ 7 Problem 3 (5 points) Assume that $x_1(t)$ and $x_2(t)$ are two periodic signals, and both of them have period T. The convolution of $x_1(t)$ and $x_2(t)$ is not well defined, because we could be collecting infinite area with the integration. Instead, for periodic signals with period T, we use what is called the "periodic convolution", that is defined as follows: $$y(t) = (x_1 \star x_2)(t) = \int_0^T x_1(\tau)x_2(t-\tau)d\tau$$ and where \star stands for periodic convolution. - 1. Assume both $x_1(t)$ and $x_2(t)$ are odd signals. Is $y(t) = (x_1 \star x_2)(t)$ even, odd, or neither? Justify your answer. - 2. Let $x_2(t)$ be a periodic signal with period $T_1 = 5$, and $x_1(t)$ be the periodic sampling signal $$x_1(t) = \sum_{k=-\infty}^{\infty} \delta(t - 4 - 5k),$$ where $\delta(t)$ denotes the delta function. Calculate the periodic convolution between $x_1(t)$ and $x_2(t)$ that is $(x_1 \star x_2)(t)$ as a function of $x_2(t)$. $$y(-t) = (x, *x_{z})(-t) = \int_{x_{1}(z)}^{x_{2}(z)} x_{z}(-t-z) dz$$ $$|et u = t+z du = dz = \int_{x_{1}(u-t)}^{x_{2}(u-t)} x_{2}(u) du$$ $$= \int_{x_{1}(u)}^{x_{2}(t-u)} x_{2}(u-t) du$$ $$= \int_{x_{1}(u-t)}^{x_{2}(u-t)} x_{2}(u) du$$ $$= \int_{x_{1}(u)}^{x_{2}(t-u)} x_{2}(u-t) \int_{x_{1}(u)}^{x_{2}$$ "note, x,(+) has period = T=5 Since & only vorice from 0 to 5 $\frac{2}{2}$ $\delta(z-4-5|c)$ r $\delta(z-4)$ since $x_1(z)=0$ for all value $y \neq 0$ for k=0 $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \int_{0}^{2} \left(\frac{1}{2} \right) dx \int_{0$: (x, *x)(t) = \$ 5(+-4) *x2(+) =