UCLA DEPARTMENT OF ELECTRICAL ENGINEERING

EE102: SYSTEMS & SIGNALS

Midterm Examination February 20, 2019 Duration: 1 hr 50 mins.

INSTRUCTIONS:

- The exam has 6 problems and 16 pages.
- The exam is closed-book.
- One cheat sheet of A4 size is allowed.
- Calculator is NOT allowed.
- \bullet Write your discussion session in the top-right corner. $\nearrow \nearrow$

Student ID:

Table 1: Score Table

Simple Real Poles

Problem 1 (10 pts)

Consider signal $x(t)$ depicted in the figure below

- (a) (5 pts) Sketch even and odd components of $x(t)$. Assume $x(0) = -2$.
- (b) (5 pts) Sketch $2x(-2t-1)$.

Solution:

(a)

The even part of $x(t)$ can be found using $x_e = \frac{1}{2}$ $\frac{1}{2}(x(t) + x(-t)).$

The odd part of $x(t)$ can be found using $x_o = \frac{1}{2}$ $\frac{1}{2}(x(t) - x(-t)).$

 $\left(b\right)$

Problem 2 (13 pts)

The system S is given by the following relation

$$
y(t) = x(t - 2) + x(2 - t), \quad -\infty < t < \infty
$$

- 1) (6 pts) Using the system relation, answer the following questions about the system. You need to justify your answer.
	- (a) (2 pts) Prove that the system is linear.
	- (b) (2 pts) Is the system time-varying or time-invariant?
	- (c) (2 pts) Is the system causal or not causal?
- 2) (5 pts) Find the impulse response function of the system.
- 3) (2 pts) Verify your answers for parts b) and c) in 1) using the impulse response function of the system. You need to justify your answer.

Solution:

$$
1)
$$

(a)

Let $y_1(t)$ be the output of the system when the input is $x_1(t)$ and $y_2(t)$ be the output of the system when the input is $x_2(t)$ as follows

$$
y_1(t) = x_1(t-2) + x_1(2-t)
$$

$$
y_2(t) = x_2(t-2) + x_2(2-t)
$$

Let $x_3(t) = \alpha x_1(t) + \beta y_2(t)$,

$$
y_3(t) = x_3(t-2) + x_3(2-t)
$$

= $(\alpha x_1(t-2) + \beta x_2(t-2)) + (\alpha x_1(2-t) + \beta x_2(2-t))$
= $\alpha(x_1(t-2) + x_1(2-t)) + \beta(x_2(t-2) + x_2(2-t))$
= $\alpha y_1(t) + \beta y_2(t)$

Hence, the system is linear.

(b)
\nLet
$$
x_4(t) = x_1(t - t_0)
$$

\n
$$
y_4(t) = x_4(t - 2) + x_4(2 - t)
$$
\n
$$
= x_1(t - 2 - t_0) + x_1(2 - t - t_0)
$$
\n
$$
y_1(t - t_0) = x_1(t - t_0 - 2) + x_1(2 - (t - t_0))
$$
\n
$$
= x_1(t - t_0 - 2) + x_1(2 - t + t_0)
$$
\n
$$
y_4(t) \neq y_1(t - t_0)
$$

Hence, the system is time varying.

(c)

If we take $t = -2$, we find that the value of y depends on the value of x at time -4 and 4. Since $4 > -2$, then this system is not causal.

2)

$$
h(t, \tau) = \delta(t - \tau - 2) + \delta(2 - t - \tau) = \delta(t - \tau - 2) + \delta(2 - t - \tau)
$$

Since, $h(t, \tau) \neq h(t - \tau, 0)$, then the system is time varying. If we take $t = 0.5$, and $\tau = 1.5$, we find that $h(t, \tau)$ is not equal to zero, hence the system is not causal.

Problem 3 (12 pts)

Consider an LTI system with the following input-output relationship:

$$
y(t) = \int_{-\infty}^{t-1} e^t \cos(2\tau + 2 - 2t) x(\tau) e^{-\tau + 2} d\tau
$$

where $x(t)$ and $y(t)$ are the input and the output of the system, respectively.

- (a) (5 pts) Find the impulse response function $h(t)$.
- (b) (2 pts) Is the system C or NC? Provide justification.
- (c) (5 pts) Is this system BIBO stable? Provide justification.

Solution:

a)

We can find $h(t)$ directly from the convolution integral. We first simplify the expression for $y(t)$.

$$
y(t) = \int_{-\infty}^{t-1} e^{t-\tau+2} \cos(2(t-\tau-1))x(\tau) d\tau
$$

= $e^3 \int_{-\infty}^{\infty} e^{t-\tau-1} \cos(2(t-\tau-1))u(t-\tau-1)x(\tau) d\tau$

We see that $h(t - \tau, 0) = e^{3} e^{t - \tau - 1} \cos(2(t - \tau - 1)) u(t - \tau - 1)$. We can abuse the notation and express the IRF in terms of one variable:

$$
h(t) = e^3 e^{t-1} \cos(2(t-1))u(t-1).
$$

b)

The system is causal since $h(t)$ is a causal function. This could be concluded from the very first expression for $y(t)$ where integration goes up to $t-1$, which means that $y(t)$ depends only on the past.

c)

The system is not BIBO stable since $h(t)$ is not absolutely integrable.

$$
\int_{-\infty}^{\infty} |h(t)|dt = \int_{-\infty}^{\infty} |e^3 e^{t-1} \cos(2(t-1))u(t-1)|dt
$$

$$
= e^3 \int_{1}^{\infty} |e^{t-1}| |\cos(2(t-1))| dt \to \infty
$$

Problem 4 (10 pts)

Consider a cascade of two systems $S_{12} = S_1 S_2$.

$$
\xrightarrow{\quad x(t) \quad S_l \quad y(t) \quad S_2 \quad z(t) \quad}
$$

The first system S_1 is described by:

$$
y(t) = \int_0^t e^{-\sigma} tx(\sigma) d\sigma, \quad t > 0
$$

where $x(t)$ and $y(t)$ are the input and the output, respectively. The second system is described by:

$$
z(t) = \int_2^t \sigma y(\sigma) d\sigma, \quad t > 2
$$

where $y(t)$ and $z(t)$ and the input and the output, respectively.

Find the impulse response function $h_{12}(t, \tau)$ of the cascaded system S_{12} .

Solution:

We first find IRF of S_1 by using $x(\sigma) = \delta(\sigma - \tau)$.

$$
h_1(t,\tau) = \int_0^t e^{-\sigma} t \delta(\sigma - \tau) d\sigma
$$

= $t \int_0^t e^{-\sigma} \delta(\sigma - \tau) d\sigma$
= $\begin{cases} te^{-\tau}, & \tau > 0, t - \tau > 0 \\ 0, & \text{otherwise} \end{cases}$
= $te^{-\tau}u(\tau)u(t - \tau)$

We can find $h_{12}(t, \tau)$ if we plug-in $h_1(t, \tau)$ in the expression for $z(t)$. In other

words, we can use $h_1(t, \tau)$ as the input to system S_2 to find $h_{12}(t, \tau)$.

$$
h_{12}(t,\tau) = \int_{2}^{t} \sigma h_{1}(\sigma,\tau) d\sigma
$$

\n
$$
= \int_{2}^{t} \sigma \sigma e^{-\tau} u(\tau) u(\sigma - \tau) d\sigma
$$

\n
$$
= e^{-\tau} u(\tau) \int_{2}^{t} \sigma^{2} u(\sigma - \tau) d\sigma
$$

\n
$$
= \begin{cases} 0, & \tau > t \\ e^{-\tau} u(\tau) \int_{\tau}^{t} \sigma^{2} d\sigma, & 2 < \tau \le t \\ e^{-\tau} u(\tau) \int_{2}^{t} \sigma^{2} d\sigma, & \tau \le 2 \end{cases}
$$

\n
$$
= \begin{cases} 0, & \tau > t \\ 0, & \tau > t \\ \frac{1}{3} e^{-\tau} u(\tau) (t^{3} - \tau^{3}), & 2 < \tau \le t \\ \frac{1}{3} e^{-\tau} u(\tau) (t^{3} - 8), & \tau \le 2 \end{cases}
$$

Problem 5 (15 pts)

1) (5 pts) Find the Laplace transform and ROC of the following function.

$$
f(t) = te^{-3t}(\sin(t) + \cos(t))^2 u(t).
$$

Hint: $sin(2x) = 2sin(x)cos(x)$.

2) (10 pts) Find the functions that correspond to the following Laplace transforms. Assume that time-domain functions are causal.

(a) (5 pts)
$$
F(s) = \frac{s}{(s+1)^2+3}
$$

(b) (5 pts) $F(s) = \frac{1}{s^4}(1 - e^{-s})^2$.

Solution:

1)

$$
\mathcal{L}\{(sin(t) + cos(t))^{2}u(t)\} = \mathcal{L}\{(sin^{2}(t) + cos^{2}(t) + 2sin(t)cos(t))u(t)\}\
$$

= $\mathcal{L}\{(1 + sin(2t))u(t)\}\$
= $\frac{1}{s} + \frac{2}{s^{2} + 4}$, $\mathcal{R}e\{s\} > 0$

$$
\mathcal{L}\lbrace t(sin(t) + cos(t))^{2}u(t)\rbrace = \frac{-d}{ds}\lbrace \frac{1}{s} + \frac{2}{s^{2} + 4}\rbrace
$$

=
$$
\frac{1}{s^{2}} + \frac{4s}{(s^{2} + 4)^{2}}, \quad \mathcal{R}e\lbrace s\rbrace > 0
$$

$$
\mathcal{L}\lbrace te^{-3t}(sin(t) + cos(t))^2 u(t)\rbrace = \frac{1}{(s+3)^2} + \frac{4(s+3)}{((s+3)^2+4)^2}, \quad \mathcal{R}e\lbrace s \rbrace > -3
$$

 $2)$

 $\mathbf{a})$

$$
\mathcal{L}^{-1}\left\{\frac{s}{(s+1)^2+3}\right\} = \mathcal{L}^{-1}\left\{\frac{s+1-1}{(s+1)^2+3}\right\}
$$

$$
= \mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^2+3} + \frac{-1}{(s+1)^2+3}\right\}
$$

$$
= e^{-t}\mathcal{L}^{-1}\left\{\frac{s}{s^2+3} + \frac{-1}{s^2+3}\right\}
$$

$$
= e^{-t}\left(\cos(\sqrt{3}t) - \frac{\sin(\sqrt{3}t)}{\sqrt{3}}\right)u(t)
$$

 $b)$

$$
\mathcal{L}^{-1}\left\{\frac{1}{s^4}\right\} = \frac{t^3}{6}u(t)
$$

$$
\mathcal{L}^{-1}\left\{\frac{1}{s^4}(1 - 2e^{-s} + e^{-2s})\right\} = \frac{1}{6}(t^3u(t) - 2(t-1)^3u(t-1) + (t-2)^3u(t-2))
$$

Problem 6 (15 pts)

Consider an LTI system S with the following impulse response function

$$
h(t) = \left(\frac{2}{3}e^{-t+1} + \frac{1}{3}e^{2t-2}\right)u(t-1)
$$

- (a) (7 pts) Find the transfer function $H(s)$. Sketch its zero-pole plot and then denote ROC in the plot.
- (b) (8 pts) If the output of the system is

$$
y(t) = \left(-\frac{1}{5}\cos(t-2) - \frac{2}{5}\sin(t-2) + \frac{1}{5}e^{2(t-2)}\right)u(t-2)
$$

find its corresponding causal input $x(t)$.

Solution:

a)

The transfer function $H(s)$ is

$$
H(s) = \left(\frac{2}{3}\frac{1}{s+1} + \frac{1}{3}\frac{1}{s-2}\right)e^{-s}
$$

=
$$
\frac{2(s-2) + s + 1}{3(s+1)(s-2)}e^{-s}
$$

=
$$
\frac{s-1}{(s+1)(s-2)}e^{-s}
$$

There is one zero at $s = 0$, and two poles at $s = -1$ and $s = 2$. The region of convergence is $\mathcal{R}e\{s\} > 2$, as depicted in the figure.

b)

The Laplace transform of the output is

$$
Y(s) = \left(-\frac{1}{5}\frac{s}{s^2+1} - \frac{2}{5}\frac{1}{s^2+1} + \frac{1}{5}\frac{1}{s-2}\right)e^{-2s}
$$

=
$$
\frac{-s(s-2) - 2(s-2) + s^2 + 1}{5(s^2+1)(s-2)}e^{-2s}
$$

=
$$
\frac{1}{(s^2+1)(s-2)}e^{-2s}
$$

We can find the Laplace transform of $x(t)$ from the fact that $Y(s) = H(s)X(s)$.

$$
X(s) = \frac{Y(s)}{H(s)} = \frac{\frac{1}{(s^2+1)(s-2)}e^{-2s}}{\frac{s-1}{(s+1)(s-2)}e^{-s}}
$$

$$
= \frac{s+1}{(s^2+1)(s-1)}e^{-s}
$$

We can find $x(t)$ by calculating the inverse Laplace transform of $X(s)$. First, we represent $X(s)$ using partial fractions.

$$
X(s) = \frac{s+1}{(s^2+1)(s-1)}e^{-s} = \left(\frac{As+B}{s^2+1} + \frac{C}{s-1}\right)e^{-s}
$$

$$
s + 1 = (A + C)s^{2} + (-A + B)s - B + C
$$

We find that $A = -1$, $B = 0$, $C = 1$. The Laplace transform $X(s)$ can be expressed as

$$
X(s) = \left(-\frac{s}{s^2 + 1} + \frac{1}{s - 1}\right)e^{-s}
$$

Finally, $x(t)$ is

$$
x(t) = (-\cos(t-1) + e^{t-1})u(t-1)
$$