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Problem 1 (8 pts)

(a)

False. The result of y(t) = cos(2nt) x h(t) can be interpreted as output
of LTI system whose IRF is h(t) and the input is cos(27t). Due to the
eigenfunction property, the output is

y(t) = H(27Tj)e2jﬂ't + H’(_Qﬂ_j>e—2jﬂ't

Therefore it is always A cos(27t — 0).
Grading comments: Full credit is not given if one simply states
“frequency will not change” without further reasoning.

False. Two poles are at s = 1 £ j, which are in right half plane.
Therefore the ROC does not contains j¢) axis.



Problem 2 (12 pts)

()
(1)

(3t)u(t — 2m)
0s(3(t — 2m) + 6m)u(t — 2m)
(3(t —2m))u(t — 2m)

COSs

Using time shift property of Laplace transform:

X (s) = e 2™ L [cos(3t)u(t)]

Se—Qﬂs

T 249
ROC is Re[s] > 0.
Poles are at s = +35 and zero is at s = 0.
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Figure 1: Pole-zero plot for Problem 2-a

y(t) = /0 (t — 7)° cos(37)dr
= /OO (t — 7)% cos(37)u(T)u(t — 7)dr

o0

= [t3u(t)] * [cos(3t)u(t)]



Using convolution property of Laplace transform:

Y (s) = L[Pu(t)] x L[cos(3t)u(t)]

Consider term I
3 1
L[t*u(t)] = 3L [%u(t)} 0
It has ROC: Re[s] > 0.

Consider term II

s
s24+9

Llcos(3t)u(t)] =

It has ROC: Rels] > 0.

Therefore,

6>< s 6
st T 249 s3(s249)

and ROC: Re[s] > 0.
There are 5 poles in total. Three poles are at s = 0 and two poles are
at s = £37. There are no zeros.
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Figure 2: Pole-zero plot for Problem 2-b



Problem 3 (15 pts)

(a) The period is Ty = 4 and fundamental frequency is Qp = QT—’(; = Z.
Xo = 0 since the signal is odd. We use following equation to find
remaining coefficients

1 [ :
X = Z_l/ sin(rt)e Il qt
—1

jrt —jmt
— 111/ - 9 — : —e Ikt dt
J

/ (ejﬂ’t(l—k/Q) i 6—j7rt(1+k/2))dt

i

8j

1 6]7rt(1 k/2) |1 e—jwt(1+k/2)|£1
T8 k2 T it k/2>]

1 [ (h/2) _ gmin(lk/2)  gmin(lth/2) _ pim(1+k/2)
T8 T gn—k2) T —jr(ltk/2) ]
_ i sin(m(1 —k/2))  sin(r(1 + k‘/2))}

47 | w(1—k/2) (14 k/2)

_J " {sm( m(1+k/2)) sin(r(l— k/Q))}

4 (1+k/2) 7(1—k/2)

(b) Substituting £ =1 and k = —1, we get

x J " sin(3w/2)  sin(m/2)] _j (=2 =2
YTy 37/2 /2 S 4\3r 7w) 37r
J
4

. {Smgz/z) Sm:s:?/;/z ] (% * 37r) 3

Therefore,

Xy =[X ] =

w|>1>1 v

le - 774)(_1 -



(c) We have

RG{Xk} = 0
sin(w(1+k/2)) sin(n(l — k/2))
br = Tm{ X} = 4 { r(l+k2)  w(l—k/2) ]
1 sin(r(1+k/2))  sin(r(1—k/2))] . s
N Z { 71+ k/2) 71— k/2) } S (k?)



Problem 4 (15 pts)
The fundamental frequency is Qg = QT—Z = 7. Due to the fact Xy =0, |k| > 3,
we can determine z(t) by

o(t) = Xo+ X1e/™ + X _1e77™ 4 XpeP?™ 4 X e 7™

For the DC component, we use

where the second equal sign is because z(t) is an even signal. Due to the fact
x(t) is real and even, the Fourier coefficients are real. Let X; = X_; = a and
Xy = X_o =b. Using 2(0.5) = 3, we have

2(0.5) = 1+ ae’™? + ae ™™ 4 bed™ 4 be ™™ = 1+ 2bcos(m) =1 —2b=3

It gives coefficients Xo = X 5, =b= —1.
Due to the power is 3, the Parseval’s relation gives

> IXGP =B + laf* + 12 + |a]” + [p]* =3+ [a]* =3

k=—o00
Therefore X; = X 1 = a = 0 and the time domain signal z(t) is
z(t) =1— ™ — 772 = 1 — 2cos(27t)
Grading comments: Recall that for integer k, we have

ejﬂ'k :(_1>k

e2mh —1.

A common mistake here is to assume equations

ejrrt :(_1)t
€j2ﬂ't =1

are also valid for t € R.



Problem 5 (20 pts)

(a) Apply Laplace transform on both side of the equation
s%Y (5) + 25Y (s) + Y (s) = 82X (s) + X (s)

The transfer function of S; is

H,y(s) :)};Ez))

s+
82425+ 1

2 n 2
s+1 (s+1)2

The IRF of S is
hi(t) =6(t) — 2e " u(t) + 2te  u(t)
The IRF of S is
ha(t) = cos(t)u(t) + sin(t)u(t)
(b) The transfer function of S5 is

s+1

Hy(s) = L{ha(t)} = 241

The cascaded system has transfer function

ng(S) :H1(8> . H2(3>
82+ s+1
2425+ 1 241

_82+1 s+ 1
T (s4+1)2? $2+1
1
Cs+1



(c) We rewrite input signal using Euler’s identity as

1 . -1 _. . ,
b{t) =1+ e 4 Tty vy i
J J

. iy -1 . ) 1. . 4 iy
—e ]37rt+06 _]27Tt+ —¢ ]7rt+16]0wt+_.e]wt+06]w2t+€j37rt+e j3mt

The fundamental frequency of z(t) is @y = 7 and therefore Fourier
series is written as

x(t) = Z X ekt
k=—0o0

Comparing the above two equations, the Fourier coefficient of x(t) can
be directly found as

1, k=0
i k=1
j
Xy = —%, kE=-1
1, k=3 and k= -3
L0, otherwise

Therefore the Fourier coefficient of z(t) are Z, = Hia(jk$0) X, and

therefore
.
1, k=0
1 . _
1 . _
Z, — —i) = —0.54+0.57, k=-1
0.1 —0.37, k=3
0.1+ 0.37, k=-3
\0, otherwise

Grading comments: There are some other ways of finding coefficient
Xy



e Apply Lapalce to signal component of x(¢) within one period,
defined as x(t) and use

1
X Ifﬁ{l’o(t)}!sqkﬂo
0
1
=5 LAzo(t) Hamjr

:%5 {[1 + 2sin(t) + 2 cos(3t)] [u(t) — u(t — 2m)]} |o=jn

1 (1 2 2s
e 1 — —27s s
27[3+32+1+s2+9][ € s
1 1 2 27k -
[ 1 — —j2nk
zw{jk+1—k2+9—k2h ]

One can find X, = 0 for k& # 0, £1, +3 because of the e /2™ term.
Otherwise it involves with 8 terms and requires special attention.
For example when k£ = 3 the % term comes from

1 25k(1 — eI

X: .
ST or 9 — k2 s
Using L’hospital’s rule in terms of k it becomes
1 jk(j2m)
Ko =0T
ST —2%

A common mistake is to directly apply Laplace transform to
x(t) rather than xy(t). Besides, since x(t) is not a causal sig-
nal, one cannot find Laplace transform of x(t) using single-sided
Laplace transform table. Actually Laplace of periodic signal does
not converge.

e Compute coefficient using definition

1 2 )
Xk / x(t)e M dt
0

T o
1 27

:% ;

1 2 1 2m 1 2
=— e Ik dt + —/ e Ik=Dtgr — —/ eIk g
2m Jo 257 Jo 29T Jo

1 27 1 2
+ — e IRty 4 — / eI k+3)t gy
27'[' 0 27T 0

[1+ 2sin(t) + 2 cos(3t)] e M dt



Note that all the above intergral has form fo% e~I™mdt for some
interger m and

/ 7 —imt gy {eﬂ”m —1=0, m#0
(A =
0

2, m =0

One can find X3 = 0 unless £ = 0,41, +3. This approach gives
same results as in other methods.

(d) The power of output signal is

P, = Z |Zk|2

k=—o00

=1+410.5+0.5j> +10.5 — 0.55* +]0.1 — 0.35]* + |0.1 + 0.35|?
=1+05+05+0.1+0.1
=2.2

10



