
UCLA DEPARTMENT OF ELECTRICAL ENGINEERING

EE102: SYSTEMS & SIGNALS

Final Examination
Date: March 18, 2019, Duration: 3 hours

INSTRUCTIONS:

• The exam has 6 problems and 17 printed pages.

• The exam is closed-book.

• Two double-sided cheat sheets of A4 size are allowed.

• Calculator is NOT allowed.

Your name:——————————————————–

Student ID:——————————————————–

Table 1: Score Table

Problem a b c d Total Score

1 5 4 6 15

2 2 2 4 7 15

3 3 7 10

4 2 5 1 2 10

5 6 9 15

6 6 3 4 2 15

Sum 80
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1 Problem 1 (15 pts)

Consider a cascade of the systems S1 and S2.

S1 S2
x(t) y(t)

h1(t) h2(t)

The input x(t) and the output y(t) of the cascade are given as follows

x(t) =
7

5
e−2tu(t)− 2

5
cos(t)u(t) +

4

5
sin(t)u(t)

y(t) =
1

2
et−1u(t− 1)− 1

2
cos(t− 1)u(t− 1)− 1

2
sin(t− 1)u(t− 1).

(a) (5 pts) Find the transfer function H(s) of the cascade and sketch its zero-pole plot.
Denote the region of convergence in the sketch.

(b) (4 pts) If the impulse response function of the system S2 is

h2(t) = etu(t),

find the impulse response function h1(t) of the system S1.

(c) (6 pts) Find the response y(t) of the cascaded system if the input is x(t) = e4−2tu(t− 2).

Solution:

(a) Since the input x(t) and the output y(t) are known, we can use their Laplace transforms
to find the transfer function H(s).

X(s) =
7

5

1

s+ 2
− 2

5

s

s2 + 1
+

4

5

1

s2 + 1

=
s2 + 3

(s2 + 1)(s+ 2)

Y (s) =
1

2

(
1

s− 1
− s

s2 + 1
− 1

s2 + 1

)
e−s

=
1

(s2 + 1)(s− 1)
e−s

H(s) =
Y (s)

X(s)

=
s+ 2

(s2 + 3)(s− 1)
e−s
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(b) Given h2(t), we can calculate the transfer function of the system S2.

H2(s) =
1

s− 1
.

Then H1(s) can be found in the following way

H1(s) =
H(s)

H2(s)

=
s+ 2

s2 + 3
e−s

The impulse response function h1(t) of the system S1 is

h1(t) = cos(
√

3(t− 1))u(t− 1) +
2√
3

sin(
√

3(t− 1))u(t− 1),

(c) Given the input x(t), we can find its Laplace transform X(s).

X(s) =
1

s+ 2
e−2s.

Then we can find the Laplace transform Y (s) of the output y(t).

Y (s) = H(s)X(s)

=
s+ 2

(s2 + 3)(s− 1)

1

s+ 2
e−3s

=
1

(s2 + 3)(s− 1)
e−3s

3



We can decompose Y (s) into partial fractions to find y(t).

Y (s) =
1

4

(
− s+ 1

s2 + 3
+

1

s− 1

)
e−3s

=
1

4

(
− s

s2 + 3
− 1

s2 + 3
+

1

s− 1

)
e−3s

y(t) =
1

4

(
− cos(

√
3(t− 3))− 1√

3
sin(
√

3(t− 3)) + et−3
)
u(t− 3)
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Problem 2 (15 pts)

Consider a system S with the periodic input x(t) and the periodic output y(t). The funda-
mental period of x(t) is T0 = 4. Let Xk and Yk be the Fourier series coefficients of x(t) and
y(t), respectively. The magnitude spectrum of Xk and the magnitude and phase spectra of
Yk are depicted in the following figures.

1 3 4-1-3-4

|Xk|

-2 2

1 3 4-1-3-4

|Yk|

-2 2 1 3 4-1-3-4

Yk

-2 2

1
0.8

0.3
0.6

π 

-π 

π/2 

-π/2 

(a) (2 pts) Is the system S linear? Explain your answer.

(b) (2 pts) Is the output y(t) a real signal? Explain your answer.

(c) (4 pts) Is the output y(t) even, odd, or neither of these? Explain your answer.

(d) (7 pts) The periodic signal z(t) is obtained by passing the signal y(t) through a filter
with the following impulse response function

h(t) = δ(t)−
sin(3π

4
t)

πt
.

Let Zk be the Fourier series coefficients of z(t).
Find Zk and sketch its the magnitude and the phase spectra. Find z(t).

Solution:

(a) The system is not linear since it introduces new frequencies in the output. The input
x(t) does not have frequencies that correspond to ω = 2ω0 and ω = −2ω0 which occur
in the output.
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(b) The output is a real signal. We can see that from the magnitude and phase spectra
of Yk. The magnitude spectra is an even function, and the phase spectra is an odd
function.

(c) The signal y(t) is neither even nor odd. We can see that from the phase spectrum of Yk.
Coefficients for k = ±1 correspond to a sine in y(t), while coefficients for k = ±2,±3
correspond to two cosines in y(t). The sum of cosines and sines results in a signal that
is neither even nor odd.

Alternatively, we can first show that the signal y(t) is not even by observing that
Yk 6= Y−k for k = 1. Then we observe that y(t) is not odd either since Y0 6= 0.
Therefore, the signal y(t) is neither even nor odd.

(d) First, we find the frequency response of the filter.

H(ω) = F{δ(t)−
sin(3π

4
t)

πt
}

= 1− rect(ω, 3π

4
).

We can see that H(ω) is a real function. Moreover, we observe that the filter is a high
pass filter with cut-off frequency wc = 3π

4
.

H(ω) =

{
1, |ω| ≥ 3π

4

0, |ω| < 3π
4

We know that the Fourier coefficients Zk are obtained after the coefficients Yk are
passed through the filter. The filter is going to remove frequencies lower than wc = 3π

4
,

which means that coefficients Yk for |k| ≤ 1 are going to be removed. We conclude
that the coefficients Zk are

Zk =

{
Yk, k = ±2,±3

0, otherwise

The signal z(t) is

z(t) =
∞∑

k=−∞

Zke
jk π

2
t

= 0.3ejπe−j2
π
2
t + 0.3e−jπej2

π
2
t + 0.6ejπe−j3

π
2
t + 0.6e−jπej3

π
2
t

= −0.6 cos(πt)− 1.2 cos(
3π

2
t)
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Problem 3 (10 pts)

Consider a periodic signal with period T = 2π defined over one period as follows

x(t) = r(t)− r(t− π

2
)− r(t− 3π

2
) + r(t− 2π) 0 ≤ t ≤ 2π

(a) (3 pts) Plot this periodic signal.

(b) (7 pts) Express this signal in terms of the complex Fourier series.

Solution:

(a) Plotting the signal, we get

(b)

t
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We have ω0 = 2π
2π

= 1. By calculating the area under the figure, we get

X0 =
1

T

∫ 2π

0

x(t)dt

=
1

2π

π

2
(
1

2

π

2
+ π +

1

2

π

2
)

=
3π

8

We calculate Xk using Laplace transform of one period

X(s) =
1

s2
(1− e−

π
2
s − e−

3π
2
s + e−2πs)

Then, substituting for s = jω0k = jk and dividing by 2π we get

Xk =
−1

2πk2
(1− e−j

π
2
k − e−j

3π
2
k + e−j2πk)

=
−1

2πk2
(2− e−j

π
2
k − ej

π
2
k)

where we used the fact that e−2jπk = 1. We can then express the signal as

x(t) =
∞∑

k=−∞

Xke
jkt
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Problem 4 (10 pts)

Consider the following signal

x(t) = 1 + cos(t)

It is used as an input to the following two systems.

S1 :y(t) = 2x(t)

S2 :z(t) = (x(t))2

Let Xk,Yk, and Zk be the Fourier series coefficients of x(t),y(t), and z(t) respectively.

(a) (2 pts) Calculate Xk and plot its magnitude spectrum.

(b) (5 pts) Calculate Yk and Zk. Plot the magnitude spectrum for each of them.

(c) (1 pts) Can you obtain Yk from Xk? If yes, find the relation between Yk and Xk, else
justify why it is not possible.

(d) (2 pts) Can you obtain Zk from Xk? If yes, find the relation between Zk and Xk, else
justify why it is not possible.

Solution:

(a) x(t) can be rewritten as follows

x(t) = 1 + 0.5ejt + 0.5e−jt

From which,

Xk =


1 k = 0

1/2 k = −1, 1

0 OW

k0 1 212

1

0.5 0.5
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(b) By applying the system relations we can find that

y(t) = 2 + 2cos(t)

Yk =


2 k = 0

1 k = −1, 1

0 OW

k0 1 212

2

1 1

We do the same for
z(t)

z(t) = (1 + cos(t))2 = 1 + 2cos(t) + cos2(t)

= 1 + 2cos(t) +
1

2
(1 + cos(2t))

= 1.5 + 2cos(t) +
1

2
cos(2t)

= 1.5 + ejt + e−jt + 0.25ej2t + 0.25e−j2t

Zk =


1.5 k = 0

1 k = −1, 1

0.25 k = −2, 2

0 OW

k0 1 212

1.5

1 1

0.25 0.25
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(c) Yes, Yk = 2Xk

(d) No. Because the system is non linear. It introduces new frequency components.
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Problem 5 (15 pts)

Let the signal y(t) be defined in the following way

y(t) =
(
x(t) cos2(t)

)
∗
(

sin(t)

πt
ej2t
)
,

where ∗ denotes convolution. Let X(ω) and Y (ω) be the Fourier transforms of x(t) and y(t),
respectively. Assume that x(t) is real and X(ω) = 0 for |ω| ≥ 1.

(a) (6 pts) Show that Y (ω) can be expressed in terms of X(ω). Put the result in the
simplest possible form.

(b) (9 pts) Let the signal x(t) be

x(t) = z(t) ∗ sin(t)

πt
,

where z(t) is given as in the following figure.

-2π 

2π 

2π 

z(t)

t

Find the expression for Y (ω), and sketch the magnitude and phase spectra of Y (ω).
Do not forget to include values on both axes.

Solution:

(a) We see that the signal y(t) is obtained by convolution of x(t)
(
1
2
− 1

2
cos(2t)

)
and

sin(t)
πt

ej2t. That means that Y (ω) can be found as follows

Y (ω) = F{x(t)

(
1

2
− 1

2
cos(2t)

)
}F{sin(t)

πt
ej2t}

We use the convolution property to reformulate the first part

F{x(t)

(
1

2
− 1

2
cos(2t)

)
} =

1

2π
X(ω) ∗

(
πδ(w)− π

2
δ(ω + 2)− π

2
δ(ω − 2)

)
=

1

4
X(ω + 2) +

1

2
X(ω) +

1

4
X(ω − 2)
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We can use frequency shifting property in the second part to shift the ideal low pass
filter to the frequency ω = 2.

F{sin(t)

πt
ej2t} = rect(w − 2, 1).

We see that the low pass filter is going to save just frequencies around w = 2.

Y (ω) =

(
1

4
X(ω + 2) +

1

2
X(ω) +

1

4
X(ω − 2)

)
rect(w − 2, 1)

=
1

4
X(ω − 2).

(b) To avoid long computations by definition, we can first observe that z(t) is the result
of convolution between two rectangular pulses.

z(t) = rect(t, π) ∗ rect(t, π).

Then we know that

Z(ω) = F{rect(t, π)}F{rect(t, π)}

=

(
2π

sin(πω)

πω

)2

Now we can evaluate X(ω) in the following way

X(ω) = Z(ω)rect(w, 1)

=

(
2π

sin(πω)

πω

)2

rect(w, 1)

=


(

2π sin(πω)
πω

)2
, |ω| ≤ 1

0, otherwise

From part a), we know that Y (ω) = 1
4
X(ω − 2), thus

Y (ω) = =


(
π sin(π(ω−2))

π(ω−2)

)2
, 1 ≤ ω ≤ 3

0, otherwise

The magnitude spectrum is non-zero in the range ω ∈ (1, 3).
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ω
 

|Y(jω)| 

31 2

π 2

The phase spectrum is zero for all values of ω since Y (ω) is a non-negative real function.

ω
 

Y(jω) 
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Problem 6 (15 pts)

Filtering is used in communication systems to reduce the magnitude of the noise with respect
to the signal. Consider the transmitted signal x(t), given by

x(t) =
sin(11t)

πt

The noise signal is given by

n(t) =
sin(0.5t)

πt
× 2 cos(19.5t)

The received signal is given by

y(t) = x(t) + n(t)

The Fourier transform of the filter is given by

H(ω) =
1√
20

√
20− |ω|(u(ω + 20)− u(ω − 20)),

1

-20 20

1

-20 20

The received signal y(t) is then passed through the filter H(ω), and the result is the
signal z(t).

(a) (6 pts) Calculate X(ω) and N(ω), the Fourier transform of x(t) and n(t) respectively.
Plot their magnitude spectra.

(b) (3 pts) Calculate the energy of x(t) and n(t). Calculate the ratio between the energies
of the signal and the noise.

(c) (4 pts) Plot the magnitude spectrum of the output Z(ω) and on the plot identify the
signal and noise components

(d) (2 pts) Calculate the energy of the filtered signal and the filtered noise components.
Calculate the ratio between them. Is there an improvement in the ratio of signal to
noise energy after applying the filter?
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Solution:

(a) Using Fourier transform table

X(ω) = u(ω + 11)− u(ω − 11)

Using modulation property, we find that

N(ω) = u(ω + 20)− u(ω + 19) + u(ω − 19)− u(ω − 20)

Their magnitude spectrum are as follows

1

-11 11

19 20-19-20

1 1

(b) Both X(ω) and N(ω) are pure real and since their amplitude is equal one, so, |X(ω)|2
and |N(ω)|2 have the same plots as X(ω) and N(ω) respectively. By applying parseval’s
theorem, and calculating the are of the plots, we can find that EX = 22

2π
and EN = 2

2π
.

The signal to noise ratio is 11.

(c) The output can be calculated using

Z(ω) = Y (ω)H(ω)
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1

-20 20-19 19-11 11

Noise Noise

Signal

1

-20 20

1/20

9/20 9/20

1/20

-19 1911-11

(d) We plot |Z(ω)|2. Using Parseval, the energy of the signal is equal to

EXH =
1

2π
× 2

(9/20 + 1)

2
× 11 =

319

40π

and the energy of the noise

ENH =
1

2π
× 2

(1/20× 1)

2
=

1

40π

The ratio between the noise and the signal is 319.

Yes, the signal to noise ratio increased from 11 to 319.
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