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═══════════════════════════════════════════════════════════ 

UCLA Department of Electrical Engineering 

EE101A – Engineering Electromagnetics 

Winter 2015 

Final Exam, March 17 2015, (3 hours) 
═══════════════════════════════════════════════════════════ 

 

 

Name _________________________________          Student number___________________________ 

 

This is a closed book exam – you are allowed 2 page of notes (each page front+back).  

 

Check to make sure your test booklet has all of its pages – both when you receive it and when you 

turn it in. 

 

Remember – there are several questions, with varying levels of difficulty, be careful not to spend too 

much time on any one question to the exclusion of all others.  

 

Exam grading: When grading, we focusing on evaluating your level of understanding, based on what 

you have written out for each problem. For that reason, you should make your work clear, and 

provide any necessary explanation. In many cases, a correct numerical answer with no explanation 

will not receive full credit, and a clearly explained solution with an incorrect numerical answer will 

receive close to full credit.  

 

If an answer to a question depends on a result from a previous section that you are unsure of, be sure 

to write out as much of the solution as you can using symbols before plugging in any numbers, that 

way at you will still receive the majority of credit for the problem, even if your previous answer was 

numerically incorrect. 

 

Please be neat – we cannot grade what we cannot decipher. 

 

 

 

 

 

 

 

 Topic Max Points Your points 

Problem 1 Smith Chart 15  

Problem 2 Impedance Matching 40  

Problem 3 Impedance of Transmission Line 15  

Problem 4 Phasors and Maxwell’s Eq 30  

    

Total  100  
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1. Smith chart basics  (15 points) 

Consider the generic transmission line problem as shown below. Assume that the transmission line is a 

coaxial transmission line filled with a material that has  =40, μ=μ0. 

 

 
(a) (5 points) For each of the following loads, mark their position on the Smith chart below (using 

the letter as a label), and write below the reflection coefficient (magnitude and phase angle). 

 

A: ZL= 60 Ω.    Γ =  

 

 

 

B: ZL = 150 + j300 Ω.  Γ = 

 

 

 

 

 

 

 

 

 

 

 

 

(b) (5 points) For each of the following loads impedances, convert to unnormalized load admittance 

YL and give the value in units Ω
-1

. Mark the position on the Smith chart below (using the letter as 

a label). 

 

A: ZL= 60 Ω.    A’  YL= 

 

 

 

B: ZL = 150 + j300 Ω.  B’ YL= 
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(c) (5 points) What is the non-normalized input impedance of the transmission line Zin(-l) for each of 

the loads if l=2 cm and f=1 GHz? Label each point on the Smith Chart using A’’, B’’. 

 

A: ZL= 60 Ω.  A’’  Zin =  

 

 

 

B: ZL = 150 + j300 Ω. B’’ Zin = 
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Smith chart for problem 1 
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2.  Transmission line – Impedance Matching  (40 points) 

For this problem, you may use any methods you wish, including the Smith chart. Also, throughout this 

problem assume that the transmission line is coaxial filled with a dielectric material =90, μ=μ0 , and the 

generator voltage is v(t)=V0 cos (2πft), where f=5 GHz and V0=1 V throughout the problem. 

 

(a) (20 points) The goal of this problem is to design an impedance matching network that prevents 

any reflections into the network and maximizes the power delivered to the load, using a shorted 

stub. All transmission lines have the same characteristic impedance Z0. Find the lengths d and  

in order to impedance match the load the line. Give your answer in terms of wavelengths. (Note, 

there are multiple solutions – you only need give one). 
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(b) (10 points) For the same problem, what should the length d and   be in meters? 
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(c)   (10 points) Now consider using a lumped circuit element to match instead of a shorted stub 

(shown as reactance Xm in the figure). Should you use an inductor or a capacitor? What value 

should you use (in either units Farads or Henries)? 
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3. (15 points)  Impedance of transmission line. Consider a two wire transmission line, and a 

single wire transmission line over a ground plane with dimensions as shown (assume that d and a 

have the same values in each case). If the characteristic impedance of the two-wire line is Z0=40 Ω, 

what is Z0 for the wire over the ground plane? Explain the reasoning behind your answer in 1-3 

sentences.  
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4. Phasors and Maxwell’s Equations  (30 points) 

(a) (8 points) Write the following phasor quantities in the time domain assuming an angular 

frequency ω. (Do not include the expression  “Re{}” in your answer). Assume E0, H0, V0, and A 

are real numbers.  

i.   0
ˆz E e   jkzE x   E(z,t) =  

 

 

 

ii.   0
ˆz e jkzjH H y    H(z,t)= 

 

 

 

iii. 3 (1 )F A j      F(t)= 

 

 

 

iv.   0z sin( )V V z   V(z,t)= 

 

 

 

 

 

(b) (4 points) Consider a plane wave propagating through a particular medium with the phasor 

relations for the field: 

 

 

0

0

ˆz E e   

ˆz e
100

jkz

jkzE



 

E x

H y
 

Assuming that μ=μ0, what is the value of σ and ϵ? What direction is this wave propagating? 
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(c) (4 points)  

 

 

 

 

0

0

ˆz E e   

ˆz (1 ) e
8

z

zE
j











 

E x

H y
 

Assuming that μ=μ0, is this wave propagating through good conductor or a poor conductor (i.e 

lossy dielectric)? Explain how you can tell the difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d) (4 points) Consider the equation: 
t


  


J . Apply this equation to a volume V with a surface 

defined by differential elements dS, and rewrite this equation in integral form. Give a physical 

explanation of what conservation law that this describes.  
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(e) (5 points) In circuit theory, Kirchoff’s voltage law says that the sum of voltages in a closed 

circuit must add up to zero. Qualitatively explain and/or derive how this rule can be derived from 

one of Maxwell’s equations. 

 

 
 

 



EE101A – Engineering Electromagnetics                    Final 

Page 16 of 25 

(f) (5 points) 

Here is a “proof” that there is no such thing as magnetism. Magnetic Gauss’s law states that: 0 B , 

When we apply the divergence theorem, we find:
 
 

  0
V S

dV d   B B S
. 

Because B has zero divergence, we are able to define B as the curl of the vector potential:
 

 B A  If 

we combine the last two equations, we obtain:  

  0
S

d  A S
. 

Next we apply Stokes’s theorem to the above result to obtain: 

  0
S C

d d   A S A l
 

Thus we have shown that the circulation of A is path independent. It follows that we can write A  

where  is some scalar function. Since the curl of a gradient is zero, we arrive at the remarkable  

conclusion that:  
  0   B

. 

That is, the magnetic field is zero everywhere!  

 

Obviously I made a mistake somewhere in this proof. Explain where I went wrong. 

(Hint: pay careful attention to the definitions of the various laws and theorems – it may be helpful to 

make sketches). 
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Maxwell’s Equations:     
0

f

f

t

t

 


  



 


  



D

B
E

B

D
H J

   Auxillary Fields: 

0

0





 

 

D E P

B
H M

      

 In linear media:    
0 e

m

 







P E

M H
           









D E

B H
  Ohm’s Law:   J E            









D E

B H
 

 

 

Electrostatic Potential:  V E             Vector potential:   B A  

Electrodynamic Potential: V
t


  



A
E  

Gradient Theorem:    ( ) ( )

b

a

f d f b f a   l  

Divergence Theorem:   
V S

dV d  A A S  

Stokes’s Theorem:   
S C

d d  A S A l  

Electric energy density: 
1

2
eW  E D  or 21

2
eW E  (in linear media) 

Magnetic energy density:  
1

2
mW  B H  or 21

2
mW H   (in linear media) 

Power dissipation density (Joule/Ohmic) =  E J  or 2E   (in Ohm’s law media) 

Poynting Theorem:    2 21 1

2 2
E H

t
 

  
      

  
E H E J   

Poynting Vector:   S E H    

Time averaged Poynting vector:  *1
Re

2
av  S E H  

Capacitance:   
Q

C
V

  

Inductance:   L N
I I

 
   

Vector identities 

  2    A A A  

  0  A  

  0f  
 

2f f   
 

          A B B A A B
 

         A B C B C A C A B  

        A B C B A C C A B
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EM waves  - Wave equation in source free medium, in time-domain and in harmonic (phasor) form 
2

2

2t



 



E
E

  

2
2

2t



 



H
H

  

2 2 0  E E
  

2 2 0  H H
  

2 2   
  

j   
  

2 n
k

c

 
 


  

  







 
z-propagating Plane wave (linearly polarized in x-direction) – phasor format – nonconducting media 

0
ˆ( ) jkz

xz E e E x
 

0ˆ( ) jkzxE
z e




H y

                

Generalized plane wave in arbitrary direction with wavevector k with arbitrary linear polarization e. 

0
ˆ( ) jE e  k R

E R e
  

  E k H
   

1


 H k E

 

Conducting media  

c j


 


 
 

j   
 c







 

1
s

f


 


        
0

ˆ( ) z

xz E e  E x
 

0ˆ( ) zxE
z e 




H y

 

 
1/2

2

1 1
2

 
 



         
   

  
  

1/2
2

1 1
2

 
 



         
   

  
 

 

Transmission lines 

 

 

( )
( )

( )
( )

dV z
R j L I z

dz

dI z
G j C V z

dz





   

   
  

2

2

2

2

( )
( ) 0

( )
( ) 0

d V z
V z

dz

d I z
I z

dz





 

 
 

0

( )( )

( )

( )

j R j L G j C

R j L
Z

G j C

   





      

 

 



  

Lossless transmission lines: 

j j L C     
  0

L
Z

C




   

1
pu

L C


    

2

pu

 



 

 

TEM lossless transmission lines: 

j j    
  0

L
Z

C




   

1
pu




   

Transmission line wave solutions (lossless lines) 

0 0( ) j z j zV z V e V e    
  

0 0

0 0

( ) j z j zV V
I z e e

Z Z

 
 

 
 

0 0

0 0

L

L

V Z Z

V Z Z






  

    
max

min

1

1

V
VSWR

V

 
 

   

2

0 2

( ) 1
( )

( ) 1

j z

in j z

V z e
Z z Z

I z e





 
 

    

2

0
0 02

0

1 tan( )
( )

1 tan( )

j l

L
in j l

L

e Z jZ l
Z z l Z Z

e Z jZ l













  
   

    

Impedance:   

1 1
Z R jX

Y G jB
   

  Admittance:  
Y G jB 

 

Constants (SI units): 0=8.85x10-12 F/m  (or C2 N-1 m-2)  μ0=4π x10-7 H/m (or N A-2)
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