$L = \frac{\Lambda}{I} = N \frac{\Phi}{I}$

UCLA Department of Electrical Engineering EE101A – Engineering Electromagnetics Winter 2014

Quiz 1, January 27 2014, (20 minutes)

Name	Student number

This is a closed book quiz – no notes or equations.

Please be neat - we cannot grade what we cannot decipher.

	Topic	Max Points	Your points
Problem 1	Electric Field	50	
Problem 2	Capacitance	50	
Total		100	

Maxwell's Equations:
$$\nabla \cdot \mathbf{D} = \rho_f$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$$

$$\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$$

$$\mathbf{M} = \chi_m \mathbf{H}$$

$$\mathbf{B} = \mu \mathbf{H}$$
Electrostatic Potential:
$$\mathbf{E} = -\nabla V$$
Vector potential:
$$\mathbf{B} = \nabla \times \mathbf{A}$$
Gradient Theorem:
$$\int_a^b (\nabla f) \cdot d\mathbf{I} = f(b) - f(a)$$
Divergence Theorem:
$$\int_a^b (\nabla f) \cdot d\mathbf{I} = f(b) - f(a)$$
Stokes's Theorem:
$$\int_s^c (\nabla \times \mathbf{A}) \cdot d\mathbf{S} = \oint_C \mathbf{A} \cdot d\mathbf{S}$$
Stokes's Theorem:
$$\int_s^c (\nabla \times \mathbf{A}) \cdot d\mathbf{S} = \oint_C \mathbf{A} \cdot d\mathbf{I}$$
Electric energy density:
$$W_e = \frac{1}{2} \mathbf{E} \cdot \mathbf{D} \quad \text{or} \quad W_e = \frac{1}{2} \varepsilon E^2 \quad \text{(in linear media)}$$
Magnetic energy density:
$$W_m = \frac{1}{2} \mathbf{B} \cdot \mathbf{H} \quad \text{or} \quad W_m = \frac{1}{2} \mu H^2 \quad \text{(in linear media)}$$

 $C = \frac{Q}{V}$ Inductance:

Capacitance:

EE101A - Engineering Electrodynamics

Quiz1

1. Consider an infinitely long cylinder of charge (with uniform charge density ρ) with diameter a. The permittivity is ε_0 everywhere. Find an expression for the electric field both for r < a and r > a. Make sure to include the vector direction.

Choose cylinder for Gaussian Surface, height h

For r<a stract of the strain of the st

For r > a $2\pi h E_r = \frac{ph\pi a^2}{\epsilon_0}$ $\vec{E} = \hat{r} \frac{pha^2}{2\epsilon_0 r}$

2. Consider a parallel plate capacitor with a potential difference V_0 applied across the plates. On the left figure, sketch the electric field lines **E** inside the dielectric, and the location and sign of the free charge. On the right side, sketch the polarization field **P**, and sketch the location and sign of the bound charge. **Please be precise and neat!**

