UCLA Department of Electrical Engineering EE101A – Engineering Electromagnetics Winter 2015 Midterm, February 9 2015, (1:45 minutes)

Name _____

Student number_____

This is a closed book exam – you are allowed 1 page of notes (front+back).

Check to make sure your test booklet has all of its pages – both when you receive it and when you turn it in.

Remember – there are several questions, with varying levels of difficulty, be careful not to spend too much time on any one question to the exclusion of all others.

Exam grading: When grading, we focusing on evaluating your level of understanding, based on what you have written out for each problem. For that reason, you should make your work clear, and provide any necessary explanation. In many cases, a correct numerical answer with no explanation will not receive full credit, and a clearly explained solution with an incorrect numerical answer will receive close to full credit. CIRCLE YOUR FINAL ANSWER.

If an answer to a question depends on a result from a previous section that you are unsure of, be sure to write out as much of the solution as you can using symbols before plugging in any numbers, that way at you will still receive the majority of credit for the problem, even if your previous answer was numerically incorrect.

Please be neat – we cannot grade what we cannot decipher.

	Topic	Max Points	Your points
Problem 1	Capacitor	50	
Problem 2	Electrostatics	10	
Problem 3	Inductor	40	
Total		100	

1. Angled Capacitor (50 points)

Consider the capacitor formed by two metal plates (perfect conductors) angled with each other with angle α . The capacitor is filled with a dielectric medium of permittivity ε , and conductivity σ . The capacitor is drawn on a cylindrical axis, and has depth *d* (out of the page). There is no free charge in the dielectric. The upper plate is held at a potential of $V(\phi=\alpha)=V_0$ and the lower plate is held at $V(\phi=0)=0$.

(a) (10 points) The scalar potential has the functional form $V(\phi)=A\phi+B$. What values of the coefficients *A* and *B* satisfy the boundary conditions?

(b) (10 points) What is the electric field inside the capacitor as a function of r and ϕ ? (Don't forget the vector direction.)

(c) (10 points) What is the surface charge density held on the upper and lower plates?

(d) (10 points) What is the capacitance? You may neglect fringing fields.

(e) (10 points) What is the resistance between the upper and lower plates?

Midterm

2. Electrostatics (10 points)

One of these is an impossible electrostatic field. Which one? You must explain why for credit.

- (A): $\mathbf{E} = 4 \left[xy\hat{x} + 2yz\hat{y} + 3xz\hat{z} \right]$
- (B): $\mathbf{E} = 2 \left[y^2 \hat{x} + (2xy + z^2) \hat{y} + (2yz) \hat{z} \right]$

Midterm

3. Inductance (40 points)

Consider a solenoid of length *l* with N turns or radius *b* driven to produce a magnetic field with current $i(t) = I_0 \cos(\omega t)$ (I₀ is real). As shown in the figure, we use the convention that a positive current is associated with current in the ϕ direction. You may consider *l* » *b* (i.e. the long solenoid approximation).

(a) (10 points) What is the self-inductance of a long solenoid, in terms of fundamental constants, and the parameters mentioned above (i.e. *l*, *b*, *N*, ϵ , μ). ?

Midterm

(b) (10 points) If a current $i(t) = I_0 \cos(\omega t)$ is flowing through the solenoid, write the H-field inside the solenoid as a function of time. Make sure to give vector direction.

Midterm

(c) (10 points) What is the voltage difference $v(t)=V_+-V_-$ at the terminals as a function of time? Pay careful attention to the sign of your answer.

Now imagine a piece of superconducting pipe that is a perfect electrical conductor with radius a=b/2, and thickness d is inserted into the center of the solenoid, as shown in part (b) of the figure. You may assume d $\ll a$

(d) (10 points) Will the addition of the perfectly conducting ($\sigma = \infty$) pipe increase, decrease, or leave unchanged the apparent self-inductance L of the solenoid? Give a qualitative explanation why.

Midterm

	$\nabla \cdot \mathbf{D} = \rho_f$
	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \qquad \mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$
Maxwell's Equations in medi	a: Auxiliary Fields: $\mathbf{H} = \frac{\mathbf{B}}{\mathbf{H}} - \mathbf{M}$
	$\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$
In linear media:	$\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E} \qquad \qquad \mathbf{D} = \varepsilon \mathbf{E}$
in media.	$\mathbf{M} = \boldsymbol{\chi}_m \mathbf{H} \qquad \qquad \mathbf{B} = \boldsymbol{\mu} \mathbf{H}$
Ohm's law:	$\mathbf{J}_f = \mathbf{\sigma} \mathbf{E}$
Electrostatic Scalar Potential:	$\mathbf{E} = -\nabla V \qquad \text{Vector potential:} \qquad \mathbf{B} = \nabla \times \mathbf{A}$
Electrodynamic Potential:	$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$
Gradient Theorem:	$\int_{a}^{b} (\nabla f) \cdot d\mathbf{l} = f(b) - f(a)$
Divergence Theorem:	$\int_{V} (\nabla \cdot \mathbf{A}) dV = \oint_{S} \mathbf{A} \cdot d\mathbf{S}$
Stokes's Theorem:	$\int_{S} (\nabla \times \mathbf{A}) \cdot d\mathbf{S} = \oint_{C} \mathbf{A} \cdot d\mathbf{I}$
Electric energy density:	$W_e = \frac{1}{2} \mathbf{E} \cdot \mathbf{D}$ or $W_e = \frac{1}{2} \varepsilon E^2$ (in linear media)
Magnetic energy density:	$W_m = \frac{1}{2} \mathbf{B} \cdot \mathbf{H}$ or $W_m = \frac{1}{2} \mu H^2$ (in linear media)
Joule power dissipation densi	ty: $W_p = \mathbf{E} \cdot \mathbf{J}$ or $W_m = \sigma E^2$ (in Ohm's law media)
Poynting Vector:	$S = E \times H$
Time averaged Poynting vect	or: $\mathbf{S}_{av} = \frac{1}{2} \operatorname{Re} \left\{ \tilde{\mathbf{E}} \times \tilde{\mathbf{H}}^* \right\}$
Capacitance:	$C = \frac{Q}{V}$
Inductance:	$L = \frac{\Lambda}{I} = N \frac{\Phi}{I}$
Boundary conditions	$E_{t,2} - E_{t,1} = 0 \qquad \qquad H_{t,1} - H_{t,2} = J_s$
	$D_{n,2} - D_{n,1} = \rho_s$ $B_{n,2} - B_{n,1} = 0$
Bound charge	$\rho_{b,v} = -\mathbf{V} \cdot \mathbf{P} \qquad \qquad \rho_{b,s} = \mathbf{P} \cdot \mathbf{n}$
Bound current	$\mathbf{J}_{b,v} = \mathbf{V} \times \mathbf{M} \qquad \qquad \mathbf{J}_{b,s} = \mathbf{M} \times \mathbf{n}$
Definition of phasor \tilde{F} for tir	ne harmonic function $f(t)$: $\begin{cases} f(t) = \operatorname{Re}\left\{\tilde{F}e^{j\omega t}\right\} = F \cos\left(\omega t + \phi\right) \\ \tan^{-1}(\phi) = \operatorname{Im}\left\{\tilde{F}\right\}/\operatorname{Re}\left\{\tilde{F}\right\} \end{cases}$
Constants (SI units): $\varepsilon_0 = 8.852$	$\mu_0 = 4\pi \times 10^{-7} \text{ H/m (or N A}^{-2})$ $\mu_0 = 4\pi \times 10^{-7} \text{ H/m (or N A}^{-2})$

Page 13 of 18

	Cartesian	Cylindrical	Spherical
	Coordinates	Coordinates	Coordinates
Coordinate variables	<i>x</i> , <i>y</i> , <i>z</i>	r,¢,z	R, θ, ϕ
Vector representation, $\mathbf{A} =$	$\hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{r}}A_r + \hat{\mathbf{\phi}}A_\phi + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{R}}A_R + \hat{\mathbf{\theta}}A_{\mathbf{\theta}} + \hat{\mathbf{\phi}}A_{\mathbf{\phi}}$
Magnitude of A, $ A =$	$t\sqrt{A_x^2 + A_y^2 + A_z^2}$	$\sqrt[4]{A_r^2 + A_\phi^2 + A_z^2}$	$t\sqrt{A_R^2 + A_{\theta}^2 + A_{\phi}^2}$
Position vector $\overrightarrow{OP_{l}} =$	$\hat{\mathbf{x}}x_1 + \hat{\mathbf{y}}y_1 + \hat{\mathbf{z}}_{z_1},$ for $P(x_1, y_1, z_1)$	$\hat{\mathbf{r}}\mathbf{r}_{1} + \hat{\mathbf{z}}_{z_{1}},$ for $P(\mathbf{r}_{1}, \phi_{1}, z_{1})$	$\hat{\mathbf{R}} R_{\perp},$ for $P(R_{\perp}, \boldsymbol{\theta}_{\perp}, \boldsymbol{\phi}_{\perp})$
Base vectors properties	$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$ $\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0$ $\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$ $\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$ $\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$	$\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = \hat{\mathbf{\phi}} \cdot \hat{\mathbf{\phi}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$ $\hat{\mathbf{r}} \cdot \hat{\mathbf{\phi}} = \hat{\mathbf{\phi}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{r}} = 0$ $\hat{\mathbf{r}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{z}}$ $\hat{\mathbf{\phi}} \times \hat{\mathbf{z}} = \hat{\mathbf{r}}$ $\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\mathbf{\phi}}$	$\begin{aligned} \hat{\mathbf{R}} \cdot \hat{\mathbf{R}} &= \hat{\mathbf{\theta}} \cdot \hat{\mathbf{\theta}} = \hat{\mathbf{\theta}} \cdot \hat{\mathbf{\theta}} = 1\\ \hat{\mathbf{R}} \cdot \hat{\mathbf{\theta}} &= \hat{\mathbf{\theta}} \cdot \hat{\mathbf{\theta}} = \hat{\mathbf{\theta}} \cdot \hat{\mathbf{R}} = 0\\ \hat{\mathbf{R}} \times \hat{\mathbf{\theta}} &= \hat{\mathbf{\theta}}\\ \hat{\mathbf{\theta}} \times \hat{\mathbf{\theta}} &= \hat{\mathbf{R}}\\ \hat{\mathbf{\theta}} \times \hat{\mathbf{R}} &= \hat{\mathbf{\theta}} \end{aligned}$
Dot product, $\mathbf{A} \cdot \mathbf{B} =$	$A_x B_x + A_y B_y + A_z B_z$	$A_r B_r + A_{\phi} B_{\phi} + A_z B_z$	$A_R B_R + A_{\theta} B_{\theta} + A_{\phi} B_{\phi}$
Cross product, A × B =		$\begin{vmatrix} \hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_r & A_{\phi} & A_z \\ B_r & B_{\phi} & B_z \end{vmatrix}$	$ \begin{array}{c cc} \hat{\mathbf{R}} & \hat{\mathbf{\theta}} & \hat{\mathbf{\phi}} \\ A_R & A_{\theta} & A_{\phi} \\ B_R & B_{\theta} & B_{\phi} \end{array} $
Differential length, dl =	$\hat{\mathbf{x}} dx + \hat{\mathbf{y}} dy + \hat{\mathbf{z}} dz$	$\hat{\mathbf{r}} d\mathbf{r} + \hat{\mathbf{\phi}} \mathbf{r} d\phi + \hat{\mathbf{z}} dz$	$\hat{\mathbf{R}} dR + \hat{\mathbf{\theta}} R d\theta + \hat{\mathbf{\phi}} R \sin \theta d\phi$
Differential surface areas	$ds_x = \hat{x} dy dz$ $ds_y = \hat{y} dx dz$ $ds_z = \hat{z} dx dy$	$ds_r = \hat{\mathbf{r}}r d\phi dz$ $ds_{\phi} = \hat{\phi} dr dz$ $ds_z = \hat{z}r dr d\phi$	$ds_{R} = \hat{\mathbf{R}}R^{2}\sin\theta d\theta d\phi$ $ds_{\theta} = \hat{\mathbf{\theta}}R\sin\theta dR d\phi$ $ds_{\phi} = \hat{\mathbf{\phi}}R dR d\theta$
Differential volume, $dv =$	dxdydz	rdrdφdz	R ² sinθdRdθdφ

Table 3-1: Summary of vector relations.

 Table 3-2: Coordinate transformation relations.

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$r = \sqrt[4]{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ z = z	$\hat{\mathbf{r}} = \hat{\mathbf{x}}\cos\phi + \hat{\mathbf{y}}\sin\phi$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_r = A_x \cos\phi + A_y \sin\phi$ $A_{\phi} = -A_x \sin\phi + A_y \cos\phi$ $A_z = A_z$
Cylindrical to Cartesian	$x = r\cos\phi$ $y = r\sin\phi$ z = z	$\hat{\mathbf{x}} = \hat{\mathbf{r}}\cos\phi - \hat{\mathbf{\phi}}\sin\phi$ $\hat{\mathbf{y}} = \hat{\mathbf{r}}\sin\phi + \hat{\mathbf{\phi}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_x = A_r \cos \phi - A_\phi \sin \phi$ $A_y = A_r \sin \phi + A_\phi \cos \phi$ $A_z = A_z$
Cartesian to spherical	$R = \sqrt[4]{x^2 + y^2 + z^2}$ $\theta = \tan^{-1} \left[\sqrt[4]{x^2 + y^2} / z \right]$ $\phi = \tan^{-1} (y/x)$	$\hat{\mathbf{R}} = \hat{\mathbf{x}}\sin\theta\cos\phi + \hat{\mathbf{y}}\sin\theta\sin\phi + \hat{\mathbf{z}}\cos\theta \hat{\mathbf{\theta}} = \hat{\mathbf{x}}\cos\theta\cos\phi + \hat{\mathbf{y}}\cos\theta\sin\phi - \hat{\mathbf{z}}\sin\theta \hat{\mathbf{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$	$A_{R} = A_{x} \sin \theta \cos \phi$ + $A_{y} \sin \theta \sin \phi + A_{z} \cos \theta$ $A_{\theta} = A_{x} \cos \theta \cos \phi$ + $A_{y} \cos \theta \sin \phi - A_{z} \sin \theta$ $A_{\phi} = -A_{x} \sin \phi + A_{y} \cos \phi$
Spherical to Cartesian	$x = R\sin\theta\cos\phi$ $y = R\sin\theta\sin\phi$ $z = R\cos\theta$	$\hat{\mathbf{x}} = \hat{\mathbf{R}}\sin\theta\cos\phi + \hat{\mathbf{\theta}}\cos\theta\cos\phi - \hat{\mathbf{\phi}}\sin\phi \hat{\mathbf{y}} = \hat{\mathbf{R}}\sin\theta\sin\phi + \hat{\mathbf{\theta}}\cos\theta\sin\phi + \hat{\mathbf{\phi}}\cos\phi \hat{\mathbf{z}} = \hat{\mathbf{R}}\cos\theta - \hat{\mathbf{\theta}}\sin\theta$	$A_x = A_R \sin \theta \cos \phi$ + $A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \phi$ $A_y = A_R \sin \theta \sin \phi$ + $A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \phi$ $A_z = A_R \cos \theta - A_{\theta} \sin \theta$
Cylindrical to spherical	$R = \sqrt[4]{r^2 + z^2}$ $\Theta = \tan^{-1}(r/z)$ $\phi = \phi$	$\hat{\mathbf{R}} = \hat{\mathbf{r}}\sin\theta + \hat{\mathbf{z}}\cos\theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{r}}\cos\theta - \hat{\mathbf{z}}\sin\theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$	$A_R = A_r \sin \theta + A_z \cos \theta$ $A_{\theta} = A_r \cos \theta - A_z \sin \theta$ $A_{\phi} = A_{\phi}$
Spherical to cylindrical	$r = R\sin\theta$ $\phi = \phi$ $z = R\cos\theta$	$\hat{\mathbf{r}} = \hat{\mathbf{R}}\sin\theta + \hat{\mathbf{\theta}}\cos\theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$ $\hat{\mathbf{z}} = \hat{\mathbf{R}}\cos\theta - \hat{\mathbf{\theta}}\sin\theta$	$A_r = A_R \sin \theta + A_{\theta} \cos \theta$ $A_{\phi} = A_{\phi}$ $A_z = A_R \cos \theta - A_{\theta} \sin \theta$

GRADIENT, DIVERGENCE, CURL, & LAPLACIAN OPERATORS CARTESIAN (RECTANGULAR) COORDINATES (x, y, z)

$$\nabla V = \hat{\mathbf{x}} \frac{\partial V}{\partial x} + \hat{\mathbf{y}} \frac{\partial V}{\partial y} + \hat{\mathbf{z}} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \hat{\mathbf{x}} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{\mathbf{y}} \left(\frac{\partial A_z}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{\mathbf{z}} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_y}{\partial y} \right)$$

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

CYLINDRICAL COORDINATES (r, ϕ, z)

$$\nabla V = \hat{\mathbf{r}} \frac{\partial V}{\partial r} + \hat{\mathbf{\varphi}} \frac{1}{r} \frac{\partial V}{\partial \phi} + \hat{\mathbf{z}} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \frac{1}{r} \left| \frac{\hat{\mathbf{r}}}{\partial r} - \frac{\hat{\mathbf{\varphi}} r}{\partial \phi} - \frac{\hat{\mathbf{z}}}{\partial z} \right| = \hat{\mathbf{r}} \left(\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right) + \hat{\mathbf{\varphi}} \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right) + \hat{\mathbf{z}} \frac{1}{r} \left[\frac{\partial}{\partial r} (rA_{\phi}) - \frac{\partial A_r}{\partial \phi} \right]$$

$$\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}$$

SPHERICAL COORDINATES (R, θ, ϕ)

$$\begin{aligned} \nabla V &= \hat{\mathbf{R}} \frac{\partial V}{\partial R} + \hat{\mathbf{\theta}} \frac{1}{R} \frac{\partial V}{\partial \theta} + \hat{\mathbf{\phi}} \frac{1}{R \sin \theta} \frac{\partial V}{\partial \phi} \\ \nabla \cdot \mathbf{A} &= \frac{1}{R^2} \frac{\partial}{\partial R} (R^2 A_R) + \frac{1}{R \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{R \sin \theta} \frac{\partial A_\phi}{\partial \phi} \\ \nabla \times \mathbf{A} &= \frac{1}{R^2 \sin \theta} \begin{vmatrix} \hat{\mathbf{R}} & \hat{\mathbf{\theta}} R & \hat{\mathbf{\phi}} R \sin \theta \\ \frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_R & R A_\theta & (R \sin \theta) A_\phi \end{vmatrix} \\ &= \hat{\mathbf{R}} \frac{1}{R \sin \theta} \left[\frac{\partial}{\partial \theta} (A_\phi \sin \theta) - \frac{\partial A_\theta}{\partial \phi} \right] + \hat{\mathbf{\theta}} \frac{1}{R} \left[\frac{1}{\sin \theta} \frac{\partial A_R}{\partial \phi} - \frac{\partial}{\partial R} (R A_\phi) \right] + \hat{\mathbf{\phi}} \frac{1}{R} \left[\frac{\partial}{\partial R} (R A_\theta) - \frac{\partial A_R}{\partial \theta} \right] \\ \nabla^2 V &= \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2} \end{aligned}$$

SOME USEFUL VECTOR IDENTITIES

$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta_{AB}$	Scalar (or dot) product
$\mathbf{A} \times \mathbf{B} = \hat{\mathbf{n}} A B \sin \theta_{AB}$	Vector (or cross) product, \hat{n} normal to plane containing A and B
$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) =$	$\mathbb{C} \cdot (\mathbb{A} \times \mathbb{B})$
$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}$	(A a B)
$\nabla (U+V) = \nabla U + \nabla V$	
$\nabla(UV) = U\nabla V + V\nabla U$	
$\nabla \cdot (\mathbf{A} + \mathbf{B}) = \nabla \cdot \mathbf{A} + \nabla \cdot \mathbf{B}$	
$\nabla \cdot (U\mathbf{A}) = U\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla U$	J .
$\nabla \times (U\mathbf{A}) = U\nabla \times \mathbf{A} + \nabla U$	×A
$\nabla \times (\mathbf{A} + \mathbf{B}) = \nabla \times \mathbf{A} + \nabla \times \mathbf{A}$	
$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) -$	$\mathbb{A} \cdot (\nabla \times \mathbb{B})$
$\nabla \cdot (\nabla \times \mathbf{A}) = 0$	
$\nabla \times \nabla V = 0$	
$\nabla \cdot \nabla V = \nabla^2 V$	
$\nabla \times \nabla \times \mathbf{A} = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2$	^{2}A
$\int_{\mathcal{V}} (\nabla \cdot \mathbf{A}) d\nu = \oint_{S} \mathbf{A} \cdot d\mathbf{s}$	Divergence theorem (S encloses v)
$\int_{S} (\nabla \times \mathbf{A}) \cdot d\mathbf{s} = \oint_{C} \mathbf{A} \cdot d\mathbf{I}$	Stokes's theorem (S bounded by C)

This page is left blank intentionally – use it for scrap paper.

This page is left blank intentionally – use it for scrap paper.