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EE101 - Engineering Electromagnetics Midterm

UCLA Department of Electrical Engineering
EE101 - Engineering Electromagnetics
Winter 2013
Midterm, February 12 2013, (1:45 minutes)

Name Student number

This is a closed book exam — you are allowed 1 page of notes (front+back).

Check to make sure your test booklet has all of its pages — both when you receive it and when you
turn it in.

Remember — there are several questions, with varying levels of difficulty, be careful not to spend too
much time on any one question to the exclusion of all others.

Exam grading: When grading, we focusing on evaluating your level of understanding, based on what
you have written out for each problem. For that reason, you should make your work clear, and
provide any necessary explanation. In many cases, a correct numerical answer with no explanation
will not receive full credit, and a clearly explained solution with an incorrect numerical answer will
receive close to full credit. CIRCLE YOUR FINAL ANSWER.

If an answer to a question depends on a result from a previous section that you are unsure of, be sure
to write out as much of the solution as you can using symbols before plugging in any numbers, that
way at you will still receive the majority of credit for the problem, even if your previous answer was
numerically incorrect.

Please be neat — we cannot grade what we cannot decipher.

Topic Max Points Your points
Problem 1 | Capacitor ' 40
Problem 2 | Transmission Line 30
Problem 3 | Boundary condition 30
Total 100
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1. Capacitor (40 points)

)

(a) (10 points) Consider the following parallel plate capacitor with perfectly conducting metal
plates, and only vacuum in between as shown below in figure (A). Assume the plates are held at
a constant potential difference Vp using a voltage source. Give an expression for the electric field
in the gap between the plates (don’t forget vector direction) in terms of Vj, and the dimensional
and material quantities (i.e. a, b, d, €, - (NOT C!)).
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(b) (15 points) Now, we insert a piece of dielectric of thickness d/2 and with permittivity £ halfway
in between the plates as shown in figure (B). Give an expression for electric field E (direction
and magnitudezl)oth inside the dielectric and in the vacuum regions.

Feldin air: E&-26
Feldmdielelrs B, -2 FE
j T nd cond .

g6 26 <% EE-£E,
EtG_ B-ZE

-—
-
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(c) (15 points) Now imagine that we open a switch connecting the voltage source (as shown in (C))
and remove the dielectric (as shown in (D)). Is the electrostatic energy in the system the same,
larger, or smaller than the original configuration shown in (A)? If your answer is “same”, explain
why. If your answer is “larger” or “smaller”, explain why, and where the energy came from or
went to. (Explanations required for full credit)

Whea e Switeh 2 opened th fuge 0 on eah bl
i= e ot K Proe sz‘, 0 i

LB, = 8 Lbibs 5 Q-+ ol 2%ed,
¢ cere Az

Whn peTs- dieledor % remoed e E.-Jeid 13
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€0 O(bft)
Blekochic 2rgy mn (A) : We- (LEEY) vabd
Bbnsrly

We= 46 Vorapd- & \oab
¥ S aLabA Z_f
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L4 ET Ly
& d"(éofé)z'a A\
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2. Transmission line (30 points)
Consider the lossless two-wire transmission line in case (a) and the single wire over a perfectly
conducting semi-infinite ground plane shown in case (b)?

Two-wire Tran Line Single wire over ground plane Tran Line
) 04 (b) 2
{ v=p ]
Ov

/

(a) (15 points) The capacitance per unit length of the two-wire line is approximately:

C'= < =— __|Whatis the capacitance per unit length of the single wire over ground
¢ ln(d /2a)
plane?

v *‘/PO
C T, (2%)

Brase o bpo e abo sap
A,”Wz Oﬁgti’\al ansSwe— C j,_;(%/;\
C Te
(7.%5
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(b) (15 points ) The inductance per unit length of the two-wire line is approximately:

L'= % = -'liln(d /2a). What is the inductance per unit length of the single wire over ground
V4

\/476’ g
L./’ %{-—ﬂn (u\/a) Comred~

plane?

o

Wreonc pluvt L= 4o p, (1))

Bewre of ]700 Ve aley aaspt
L b ()
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3. Boundary conditions (30 points)

Consider the case of time-harmonic fields described by phasors H , B for (i.e. fields varying with a

single angular frequency w).

(a) (15 points) At the interface between a perfect conductor (region 2) and a material with
permittivity £and permeability x (region 1), we can write the boundary conditions for magnetic

fields: { {I = ‘f ,H, =0 (transverse fields)

= =
B,=B, =0 (normal fields) E(}): Ro { B 60“’*}
Explain qualitatively why the normal B-field must go to zero on both sides of the interface at a
perfect conductor (¢ = ). You should identify in your explanation which of Maxwell’s laws is
responsible. If you wish, you may supplement your explanation with diagrams or equations.

Thee  ore molkple woys b thnk abat s Poblen.

B Imagine o +ime Vrying B-Led  Jae

a C Passny thypwh He_;SaH[zzce of o P‘-’f’t‘c+
_ con doch— /2 93%#0 Yo Fordey's
Low dells vs 0 <oferodal E-teld wil Anie

| O wreent in e con dudor, Ampecess Layv tels
Us Thal Hha vill ke an oppasiy Bfeld whh Eunol

B Ll igde a perf(’;} con dychor, -

Tine Normonz Faadoy s Lo e =i

gm = e E =0 nside aparlq"/ ondictr - Othrwie ’V‘Vp*;';}"
Corront vood Flow . (ruus Lyw VB0 gives s e
bwnclw‘y Condi bor I,A?;,,= ﬁzy, ; whih myst egul Zep,

Slignd | A feent iew S VK;EB“’)‘WE / and Ef z horml
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(b) (15 points) Now consider the case where the conductor is not perfect (¢ # o). For which case is
the ary conditien listed 1 a better approximation: the low frequency case (@ — 0), or

thé high frequency case (o — ). E plain why.

o Pl 07, ik nonzew E-bell 3 mgurdd
b Arve the éo/mofjal é‘urﬁm Lomnb that
pmcba The @ncellhj B-Feld

Fl

R

Foadiy™s Law TxE=2w
UxT--jow 2
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V-D=p,
VxE-—%—B D=¢gE+P
Maxwell’s Equations in media: d Auxillary Fields: B
) VeB=0 Y H= ~-M
vxH=J,+%
ot
I li di P=¢yE D=¢E
inear media:
M=y H B=uH
Ohm’s law: J=0E
Electrostatic Scalar Potential: E=-VV Vector potential: B=VxA
oA
Electrodynamic Potential: ~E=-VV ‘E

b

[(Vf)d=f®)- f @)

Gradient Theorem:

Divergence Theorem: J. (VeA)dV = @ A«dS

14

Stokes’s Theorem: L (VxA)edS = @ Aedl

Electric energy density: W, = EE.D or W, = —;-eE *  (in linear media)

Magnetic energy density: W, = -%—B-H or W, = % 4H?  (in linear media)

Joule power dissipation density: W, =E.J or W, =0oE? (in Ohm’s law media)
Poynting Vector: S=ExH

Time averaged Poynting vector: S, = %Re{fi X fl'}

Capacitance: C= Q

v
Inductance: L= A N bl

1 1

" EI 2T EI 1= 0
Boundary conditions i
Dn.Z - Dn.l = p.\'

Bound charge Py, =—VeP
Bound current J,,=VxM
Definition of phasor F for time harmonic function A {

Constants (SI units): =8.85x10""2 F/m (or C*N'! m'z)
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H,-H,=J
B,-B,=0
Ps., = Peit

J,, =Mxi

f()= Re{i’e”"} = |F|cos(ar + 9)
tan”'(¢) = Im{F)/Re(F)

Ho=4n x107 H/m (or N A2)
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Cartesian Cylindrical
_ Coordinates Coordinates
_Coordinate variables Xz L I X
Vectorrepmmtaﬁon,A— RA +3Ay+34; i'A,+$AQ+M,,
Magnitude of A, |A] = VAZ +A2+A} ‘/Az +A}+A7
B o e =
Position vector OP| = ix.+yyl+2z ' i"1+’ll.
NS S  forPiuynn) o ferPlrudua)
Base vectors properties tek=y-y=t2=1 Ptt= éé 2-2=1
t-y=92=22=0 tg=¢-2=2-#=0
ixy=2 _?T 2 :
Ix2=1% ¢xz_i
| _ : put=y | dxt=d |
Dot product, A-B = ,B,+AZB,+A,B, _ A;B,+ABy+AB,
2 § 2 ¢ ¢ 2
Cross product, AxB = | A Ay A, | Ay Ay A
| By By B | Br By B, |
Differentiallength,dl=  Rdx+jdy+2dz _ tdr+drdy+2dz
Differential surface areas ds, = kdydz ds, = trd¢dz
dsy = ¥dxdz dsy =¢drdz
ds, = 2dxdy dsy=2rdrd¢
lefermﬂnl volume, dv = dxd_ydz rdrdqidz

Ir.mslorm.ﬂlon

Cartesian to
cylindrical

Cytindricat to

Cartesian

Cartesian to
spherical

Spherical to
Cartesian

Cylindrical to
spherical

Spherical to
cytindrical
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Tabte 2-1: Summary of vector relations.

Midterm

Spherical
Coordinates
RSO

Rag+ 040 +4
VA%+A,+A,
o - R;l‘...__
 forP(R,BLG)

RR=0-0=¢-4=

R-6=0-¢=4¢-R
RxO=9-
Oxd=R

 éxR=8

_Aan +AeBe +A4¢By
R 8 ¢

AR Ae Ay
| Bg Be By

[
O -

 RdR+0Rd0+4Rsin040
dsg = RR*5in0d0d9
dso = ORsin0dR do

R2 smedeed¢

‘Tahle A-2: Coordinate transformation relations.

( oprilinate \ q

r= YFF7
=tan""(y/x)

_z—z

x=rcosd
y=rsind
=2

R={x+y+7

_ L uit Vectors

I 1!! Ly

"’ 1

R = ksinBcosd
+ §sinOsind + 2cos O

8 =tan~:[{/x+y%/7] ® = kcosBcosd

¢ = tan” ' (y/x)

x = RsinfBcos¢

y=Rsin0sind

2 = Rcos@

e
0= tan™(r/z)
9=9¢

r= Rsin®

©
i
©

Z=Rcos

+§cosBsind — 2sind
= —ksing+ §cosd
t = RsinBcosd
+6cos0cosd —sind
§ = Rsin@sin¢
+6cos0sing +Qcos¢
2= Rc_ose_ ésme__
R = tsinB+ 2cos6
6 = fcos0 —2sin0

-

F
i. sin@+BcosO
¢
2

$
R
9
R

cos® —Bsind

\ermr ¢ smpone :nis

A, =Accosd+Aysind
Ay = —Asing +Aycosd

A=A
Ac =A,cos¢ — A,sm¢

Ay =A;sind+Aqcoséd

Az =4,

Ap = Asinfcosd
+AysinBsing +Azcosd

Ae¢ = AccosOcos¢
+AycosBsing—A,sin®

Ay = -Asind +A_,cos¢

A, = Agsinfcos¢
+Agcoscosd — Ay sind

Ay = AgsinOsing
+AgcosOsind +Aycosd

Ag =_ARco_50—Aosi_n9

Ap=A, sin@+4 A cos 6

Ag = A,cos0 —A,sind

Ay =4

A, = Apsin© 4 Apcos®

Ay =4Aq

Ap = Agcos® - Agsin®



EE101 - Engineering Electromagnetics Midterm

CARTESIAN (RECTANGULAR) COORDINATES (x, y, 2)
.')V+.8\-' 1%

VA= — 4 L4 ¢
dx ay az
X y 7
ALEIE S I A PRI e 1)
dy  dv 8z iy az 0z ax A ay
1A, A AL
1Al A E VP RV
Vi = —
ix? + iy? + 022

CYLINDRICAL COORDINATES (r,¢,z)

OV 1AV gV
r— + +Z—

or r d¢ a2
134, + dA.

VV =

)
V-A=-—(A,) +

rar rig | 9z
P opr oz
19 d J .f13A. 09A -~ {0A, JA. Lo 0A,
R B E L - e ) B Y Ay IS KA
r|idr  o¢ oz r o¢ 9z az ar ror oo
Ar rA,,, A:.
1d [ 8V 1 9V B2y
V2V=“’“(f— S T
ror ar r- o= az’

SPHERICAL COORDINATES (R,0,9)

Vo RY gLV o 1 v
TR T R 6 T PRsing oo

VA=~ Ry D (Ausing) = —1 Ao
A= —— (R, ; —( Ay sin —
RIIR TR T Rineon 0 Rsint 9
'R OR  $Rsine
_— ! o B
*A=Rne AR W P
Ar  RA, (Rsiné)A,

T 0A ] I 1 aAx 8 A Ak
=R lAgsinf) = =Ly §— | 27k 0 puy b gl aa DAk
R<in® [zm oS0 = = ] R [sinﬁ i IR “”J R [HR T

(
. 1 a v ] 3 f . a9V 1 92V
vy = — 2 R-’—)+,—,“—(sme‘,—)+—,‘_,
R-OR dR R-sin® 00 o6 R2sin- 6 g2
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A-B= ABcosfsp Scalar (or dot) product
Ax B=1nABsinOs Vector (Or Cross) product,ﬁ normal to plane containing A and B
A~(BxC)=B-(CxA)=C-(AxB)

Ax (BxC) =BA-C)-CA 8B)

VU +FV)Y=VUFVV

V(UV)=UVV +VVU
V.(A+B)=V-A+V-B

V. (UA)=UV-A+A - VU

Vx(UA)=UV xA+VU XA
Vx(A+B)=VxA+VxB
V-(AxB)=B-(VxA) —A-(VxB)

V- (VxA)=0

VxVv=0

V.9V =V

VxVxA=V(V-A)-V3A

f (V- -A)dy = f A-ds Divergence theorem (S encloses V)
v S

f (VxA) - ds= % A.dl Stokes’s theorem (S bounded by C)
s c
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