

Conducting wires above a conducting plane carry currents I_1 and I_2 in the directions shown in the figure above. Keeping in mind that the direction of a current is defined in terms of the movement of positive charges, what are the directions of the image currents corresponding to I_1 and I_2 ?

EE101A - Engineering Electromagnetics

2. Electrostatics (20 points)

Which of the two following cases does not meet the electrostatic field assumptions? Explain.

(A):
$$\vec{E} = 4[xy\hat{x} + 2yz\hat{y} + 3xz\hat{z}]$$

(B):
$$\vec{E} = 2[y^2\hat{x} + (2xy + z^2)\hat{y} + (2yz)\hat{z}]$$

The poes not meet electrostatic field assumption be
$$\nabla x \in \pm 0$$
.

$$(B)\hat{x}(2z-2z) + \hat{y}(0-0) + \hat{z}(2y-2y)$$

$$\forall x \in \pm 0$$

3. Inductor in a changing magnetic field (30 points)

An inductor is formed by winding N turns of a thin conducting wire into a circular loop of radius a. The inductor loop is in the x-y plane with its center at the origin, and connected to a resistor R, as shown in the figure above. In the presence of a magnetic field $\vec{B} = B_0(\hat{y}3 + \hat{z})\sin\omega t$, where ω is the angular frequency. Note: $\frac{d\sin x}{dx} = \cos x$; $\frac{d\cos x}{dx} = -\sin x$ Find the following parameters:

(a) the magnetic flux linking a single turn of the inductor

N=1
$$\overline{\Phi} = \int B \cdot ds = B \cdot (\sqrt{3} + \frac{1}{2}) \sin(\omega t) \cdot (\pi \alpha^2)$$

$$= B_0 \sin(\omega t) \cdot (\pi \alpha^2)$$

(b) the $V_{emf}^{tr} = V_1 - V_2$, given that N=10, B₀=0.2T, a=10cm, and ω =10³ rad/s,

(c) the polarity of V_{emf}^{tr} at t=0

(d) the induced current in the circuit for $R=1k\Omega$ (assume the wire resistance to be much smaller than R)

$$I = \frac{-20\pi\cos(10^3t)}{1000}$$