UCLA Department of Electrical Engineering EE101A – Engineering Electromagnetics Fall 2019 | | Midterm, October 30, 2019, (100 minu | |---|--| | | | | Name: | Student number | | This is a allowed to use a calcula cell phones. | owed 2 pages (A4 size) of notes (front + back). For are tor. You are NOT allowed to use other electronic devices such as laptops and | Check to make sure your test booklet has all of its pages – both when you receive it and when you turn it in. Remember – there are several questions, with varying levels of difficulty, be careful not to spend too much time on any one question to the exclusion of all others. Exam grading: When grading, we focus on evaluating your level of understanding, based on what you have written out for each problem. For that reason, you should make your work clear, and provide any necessary explanation. In many cases, a correct numerical answer with no explanation will not receive full credit, and a clearly explained solution with an incorrect numerical answer will receive close to full credit. CIRCLE YOUR FINAL ANSWER. If an answer to a question depends on a result from a previous section that you are unsure of, be sure to write out as much of the solution as you can using symbols before plugging in any numbers, that way you will still receive the majority of credit for the problem, even if your previous answer was numerically incorrect. Please be neat – we cannot grade what we cannot decipher. | | Topic | Max Points | Your points | |------------------------|----------------|------------|-------------| | Problem 1 | Electrostatics | 15 | 15 | | Problem 2 Gauss's Law | | 20 | 20 | | Problem 3 | Faraday's Law | 20 | 17 | | Problem 4 Ampere's Law | | 20 | 17 | | Problem 5 | Electrostatics | 25 | 17 | | Total | | 100 | 86 | EE101A – Engineering Electromagnetics This page intentionally left blank. Midterm Constants (SI units): $$\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$$ $\mu_0 = 4\pi \times 10^{-7} \text{H/m}$ 1. Electrostatics (15 points) Which of the two following expressions does not meet the electrostatic field assumptions? Explain why. a): $$\vec{E}_{\omega} = 3[(4x + y^2)\hat{x} + (5xy + \frac{1}{2}z^2)\hat{y} + (yz)\hat{z}]$$ b): $$\vec{E}_{\downarrow} = 2[(3x + 2z^2)\hat{x} + 2yz\hat{y} + (4xz + y^2)\hat{z}]$$ b): $$E = 2[(3x + 2z^2)\hat{x} + 2yz\hat{y} + (4xz + y^2)\hat{z}]$$ $\nabla \times \hat{E} = \hat{O} - 9$ in electrostatics, \hat{E} - fields one conservative $$\nabla \cdot \hat{D} = e_{1}$$ $$\nabla \times \hat{E}_{0} = 3 \left(\frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} - 2 \right) - \hat{y}(0 - 0) + \hat{z}(5y - 2y) \right) = 0$$ Since $$\nabla \times \vec{E}_a = 9y\hat{z} \neq \hat{0}$$ and $\nabla \times \hat{E} = \hat{0}$ in electrostatics Midterm 2. Gauss's Law (20 points) Midterm A spherical shell with outer radius b surrounds a charge-free cavity of radius $a \le b$ (in the figure above). If the shell contains a charge density given by $$\rho_v = -\frac{\rho_{v0}}{R^2}, \quad a \le R \le b,$$ above). If the shell contains a charge density given by $$\rho_v = -\frac{\rho_{v0}}{R^2}, \quad a \le R \le b,$$ Where ρ_{v0} is a positive constant, determine \overrightarrow{D} in all 3 regions: $a < R, a \le R \le b$ and $R \ge b$? Where ρ_{v0} is a positive constant, determine \overrightarrow{D} in all 3 regions: $a < R, a \le R \le b$ and $R \ge b$? $$\rho_{v0} = \rho_{v0} =$$ $$\alpha \leq R \leq b : \quad Q_{ext} = \frac{\pi^2 \pi R}{SSS} \left(-\frac{e_{vo}}{R^2} \right) R^2 SM \Theta dR d\Phi d\theta = -e_{vo} \left(R - \alpha \right) \left(2\pi \right) \left(2 \right)$$ $$= 4\pi e \left(R - \alpha \right)$$ $$\vec{p} = \vec{R} \frac{1}{4\pi R^2} \left(-4\pi \rho_{N_0}(R-\alpha) \right) = \frac{-4\pi \rho_{N_0}(R-\alpha)}{R^2} \hat{R}$$ $$R \ge b: \qquad Q_{exc} = \int_{0=0}^{\infty} \int_{0}^{\infty} \frac{S(-\frac{ev_0}{R^2})}{S(-\frac{ev_0}{R^2})} R^2 \sin\theta dR d\theta d\theta = -\frac{ev_0(b-a)(2\pi)(2)}{R^2}$$ $$= -\frac{ev_0(b-a)}{R^2} \hat{R}$$ Midterm 3. Faraday's Law (20 points) An inductor is formed by winding N turns of thin conducting wire into a circular loop of radius a. The inductor loop is in the x-y plane with its center at the origin, and connected to a resistor R, as shown in the figure below. In the presence of a magnetic field $\vec{B} = B_0(\hat{y} + 2\hat{z}) \sin \omega t$, where ω is the angular frequency. Find the following parameters: - (a) the magnetic flux linking a single turn of the inductor; - (b) the $V_{emf}^{tr} = V_1 V_2$, given that N = 10, $B_0 = 0.2$ T, a = 15 cm, and $\omega = 10^3$ rad/s; $$V_{emf}^{t'} = V_1 - V_2$$ $$V_{emf} = -\frac{dQ}{dt} = -\frac{d}{dt} \left(2\pi a^2 B_0 sin \omega t \right) = \left[-2\pi a^2 B_0 \omega \cos(\omega t) \right]$$ $$-3$$ Midterm Midterm 4. Ampere's Law (20 points) Find the magnetic flux density ${\bf B}$ in the interior region of a tightly wound solenoid. The solenoid is of length l and radius a, and comprises N turns carrying current I. Bouts de Os #### 5. Electrostatics (25 points) A uniform line charge (positively charged, line charge density ρ_l , length l) stands perpendicularly on a grounded perfectly conducting plane (infinite large in x and y direction). Assuming that the free space has a dielectric permittivity of ε_0 . Find the following parameters: - (a) Electric field at the ground plane surface $\mathbf{E}(r, z = 0^+)$, where r is the cylindrical radial coordinate shown in the figure below. - (b) Surface charge density at the ground plane surface ρ_s $(r, z = 0^+)$ Hint: One or more of the following indefinite integrals may be useful. i) $$\int \frac{x dx}{\sqrt{x^2 + L^2}} = \sqrt{x^2 + L^2}$$ ii) $$\int \frac{dx}{\sqrt{x^2 + L^2}} = \ln(x + \sqrt{x^2 + L^2})$$ iii) $$\int \frac{dx}{(x^2 + L^2)^{3/2}} = \frac{x}{L^2 \sqrt{x^2 + L^2}}$$ iv) $$\int \frac{x dx}{(x^2 + L^2)^{3/2}} = -\frac{1}{\sqrt{x^2 + L^2}}$$ $$\nabla^{2}V = \frac{\partial^{2}U}{\partial r^{2}} = \frac{\ell_{e}}{4\pi\epsilon_{o}} \frac{\partial}{\partial r} \left(\frac{1 + \sqrt{2^{2} + r^{2}}}{r} \left(\frac{\partial}{\partial r} \left(\frac{1 + \sqrt{2^{2} + r^{2}}}{r} \right) \right) \right) = \frac{-\ell_{s}}{\epsilon_{o}}$$ $$e_{s} = -\frac{\ell_{e}}{4\pi\epsilon_{o}} \frac{\partial}{\partial r} \left(\frac{1 + \sqrt{2^{2} + r^{2}}}{r} \left(\frac{\partial}{\partial r} \left(\frac{1 + \sqrt{2^{2} + r^{2}}}{r} \right) \right) \right)$$ $$\frac{-\ell_{s}}{\epsilon_{o}}$$