UCLA Department of Electrical Engineering EE101A – Engineering Electromagnetics Fall 2018 Midterm, November 13, 2018, (100 minutes)

This is a closed book exam – you are allowed 2 pages (A4 size) of notes (front + back). You are allowed to use a calculator. You are NOT allowed to use other electronic devices such as laptops and cell phones.

Check to make sure your test booklet has all of its pages – both when you receive it and when you turn it in.

Remember – there are several questions, with varying levels of difficulty, be careful not to spend too much time on any one question to the exclusion of all others.

Exam grading: When grading, we focusing on evaluating your level of understanding, based on what you have written out for each problem. For that reason, you should make your work clear, and provide any necessary explanation. In many cases, a correct numerical answer with no explanation will not receive full credit, and a clearly explained solution with an incorrect numerical answer will receive close to full credit. CIRCLE YOUR FINAL ANSWER.

If an answer to a question depends on a result from a previous section that you are unsure of, be sure to write out as much of the solution as you can using symbols before plugging in any numbers, that way you will still receive the majority of credit for the problem, even if your previous answer was numerically incorrect.

Please be neat - we cannot grade what we cannot decipher.

	Topic	Max Points	Your points
Problem 1	Electrostatics	15	11
Problem 2	Plane Wave	15	1,5
Problem 3	Faraday's Law	30	30
Problem 4	Capacitor	20	20
Problem 5	Ampere's Law	20	20
Total		100	(00)

Page 1 of 7

EE101A – Engineering Electromagnetics

Midterm

1. Electrostatics (15 points)

Which of the two following expressions does not meet the electrostatic field assumptions? Explain why.

(A):
$$\vec{E} = 3[(5x + 2z^2)\hat{x} + 2yz\hat{y} + (4xz + y^2)\hat{z}]$$

(B): $\vec{E} = 2[(2x + y^2)\hat{x} + (3xy + z^2)\hat{y} + (2yz)\hat{z}]$

(B):
$$\vec{E} = 2[(2x + y^2)\hat{x} + (3xy + z^2)\hat{y} + (2yz)\hat{z}]$$

=
$$\hat{x}(2y - 2y) - \hat{y}(4z - 4z) + \hat{z}(0)$$
 = $0 - 0$]

= $\hat{x}(2y - 2y) - \hat{y}(4z - 4z) + \hat{z}(0)$ = $0 - 0$]

meets
assumption.

$$(B) = \begin{cases} \frac{1}{2} \nabla \times \vec{E} = \begin{cases} \frac{1}{4} & \hat{y} & \hat{z} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac$$

$$= \hat{x} \left[2z - 2z \right] - \hat{y} \left[0 - 0 \right] + \hat{z} \left[3y - 2y \right]$$

Since
$$\nabla \times \hat{E} \neq 0$$
, B) is not on ES field

2. Plane Wave (15 points)

The magnetic field of a wave propagating through a certain nonmagnetic material is given by

Find the following: $\vec{H} = \hat{z} + \frac{45 \cos(2\pi \times 2 \times 10^8 t + 2\pi \cdot y)}{6} \quad (\text{mA/m})$

- (a) The direction of wave propagation.
- (b) The phase velocity.
- (c) The wavelength in the material.
- (d) The relative permittivity of the material.
- (e) The electric field phasor.

$$\hat{H} = \hat{z} + 45 e^{+2\pi y} \left[\frac{mA}{m} \right]$$
(a)
$$\hat{k} = \left[-\hat{y} \right] \text{ direction}$$

(b)
$$\alpha_{p} = \frac{\omega}{K} = \frac{2\pi \times 2 \times 10^{8}}{317} = 2 \times 10^{8}$$

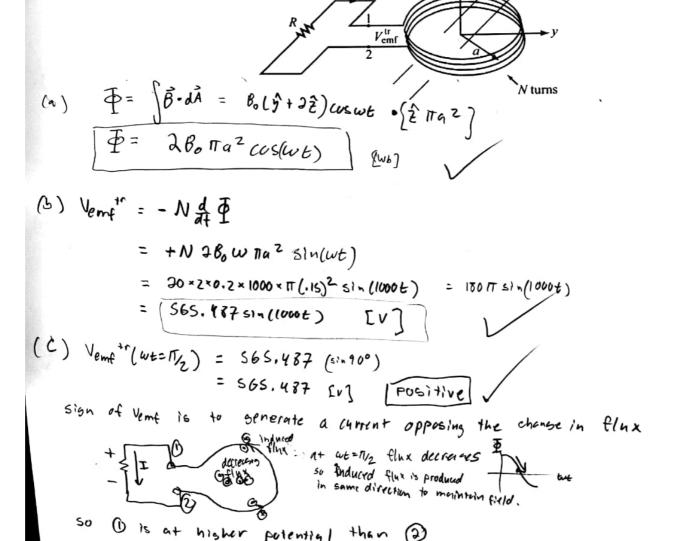
(c)
$$2 = \frac{2\pi}{K} = \frac{2\pi}{2\pi} = \prod_{m \neq 1} m_{1}^{2}$$

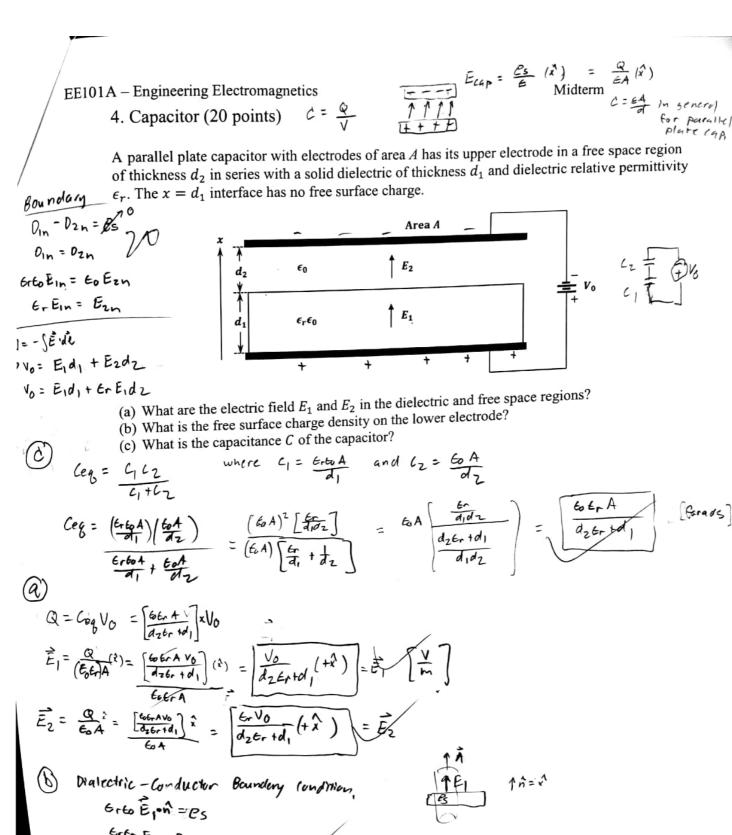
$$\frac{1}{C} = \frac{1}{\sqrt{6r}} = \frac{2^{1/0}}{3^{1/0}} = \frac{1}{\sqrt{6r}}$$

$$= \frac{2^{1/0}}{3^{1/0}} = \frac{1}{\sqrt{6r}}$$

(e)
$$\tilde{E} = -\eta(\hat{k} \times \hat{H})$$
 where $\eta = \sqrt{\frac{\pi}{e}} = \sqrt{\frac{\pi}{e_{r}}} = \sqrt{\frac$

$$= -30\pi \left[(-\hat{y}) \times (\hat{z}) \right] + 3e^{2\pi y} \left[\frac{mv}{m} \right]$$


$$= 11309.7 e^{2\pi y} (+\hat{x}) \left[\frac{mv}{m} \right]$$

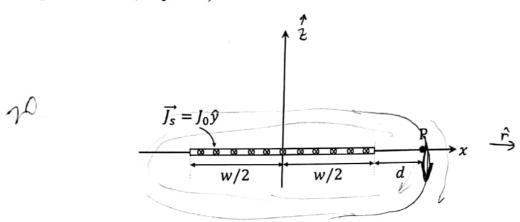

$$= (+\hat{x}) 11.31 e^{2\pi y} \left[\frac{v}{m} \right]$$

3. Faraday's Law (30 points)

An inductor is formed by winding N turns of thin conducting wire into a circular loop of radius a. The inductor loop is in the x-y plane with its center at the origin, and connected to a resistor R, as shown in the figure below. In the presence of a magnetic field $\vec{B} = B_0(\hat{y} + 2\hat{z}) \cos \omega t$, where ω is the angular frequency. Find the following parameters:

- (a) the magnetic flux linking a single turn of the inductor;
- (b) the $V_{emf}^{tr} = V_1 V_2$, given that N = 20, $B_0 = 0.2$ T, a = 15 cm, and $\omega = 10^3$ rad/s;
- (c) the polarity of V_{emf}^{tr} at $\omega t = \pi/2$;

[£]


Es = Erto Vo

Page 6 of 7

EE101A - Engineering Electromagnetics

Midterm

5. Ampere's Law (20 points)

An infinitely long thin conducting sheet of width w positioned along the x direction and lying in the x-y plane as shown in the figure. It carries a surface current density of $\vec{J}_s = J_0 \hat{y}$. Find the magnetic field \vec{H} at point P.

mpries Law for a arions where
$$gH: de= Ienclosed = H= Ienclosed = but at point P, direction is $(-2)$$$

$$\vec{H} = \frac{d\vec{I}}{\partial nr} \left(-\frac{2}{2} \right)$$

$$\vec{H} = \int \frac{J_0 dr}{\partial nr} \left(-\frac{2}{2} \right)$$