EC ENGR 101A Final

Winter 2020

Name:_________________________________

Student ID#: ____________________________

- A. Please put all the work on the test paper.
- B. Show your work! Provide clear explanations and show calculations.

Allowed:

pen/pencil calculator formula sheet: two sides of an 8 ½" by 11" sheet of paper. Open book and notes

Not Allowed:

Internet searches Communication with anyone

Score

Possibly useful information

$$
\int \frac{1}{u(a+bu)} du = \frac{1}{a} \ln \left| \frac{u}{a+bu} \right| + C \qquad \qquad \int \frac{1}{\sqrt{u^2 \pm a^2}} du = \ln |u + \sqrt{u^2 \pm a^2}| + C
$$

GRADIENT, DIVERGENCE, CURL, & LAPLACIAN OPERTORS
\nCARTESIAN (RECTANGULAR) COORDINATES (x, y, z)
\n
$$
\nabla v = \frac{\hat{s} \frac{\partial y}{\partial x} + \hat{y} \frac{\partial y}{\partial y} + \hat{z} \frac{\partial y}{\partial z}}{|\hat{s} \hat{s} \hat{s} \hat{b} \hat{b}|} = \hat{x} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{y} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{z} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)
$$
\n
$$
\nabla^2 v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \frac{\partial^2 v}{\partial z^2} = \hat{x} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_z}{\partial z} \right) + \hat{y} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{z} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)
$$
\n
$$
\nabla^2 v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}
$$
\n**CYLINDRICAL COORDINATES (r, \phi, z)**\n
$$
\nabla v = \hat{t} \frac{\partial v}{\partial r} + \hat{\phi} \frac{1}{r} \frac{\partial \phi}{\partial \phi} + \frac{\partial^2 v}{\partial z}
$$
\n
$$
\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\hat{b}}{\partial r} \left(r \frac{\partial v}{\partial r} \right) + \frac{1}{r^2} \frac{\partial A_z}{\partial \phi} + \frac{\partial A_z}{\partial z}
$$
\n
$$
\nabla^2 v = \frac{1}{r} \frac{\hat{a}}{\partial r} \left(r \frac{\partial v}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v}{\partial \phi^2} + \frac{\partial^2 v}{\partial z^2}
$$
\n**SPHERICAL COORDINATES (R, \theta, \phi)**\n
$$
\nab
$$

- **1. Off to a good start (easy points!) (10 points)** Write down your favorite one of Maxwell's equations. Any one of them will be the correct answer.
- **2. Phasors (5 points)** Write the equivalent time domain expression, $\vec{H}(x, y, z, t)$ for the phasor $\widetilde{H}(x, y, z) = \hat{x}j e^{jkz} + \hat{y} \frac{e^{jkz}}{j}$, assuming frequency of ω .
- **3. Units!** (5 points) *Show the units for* $W_m = \frac{1}{2} \vec{H} \cdot \vec{B}$. The answer should simplify to a fraction with one unit in the numerator and one in the denominator. It is possible that one or both units will have an exponent.
- **4. Reflection coefficient (10 points):** Write on your paper all the values that could possibly be a valid value of Γ.
- a) $\Gamma = 0$
- b) $\Gamma = 0.2 + j0.3$
- c) $\Gamma = -50 \Omega$
- d) $\Gamma = j$
- e) $\Gamma = 0.8 + j0.7$
- **5.** Boundary conditions (10 points): You have an electric field in Medium 1 given by $\overrightarrow{E_1}$ = $= E_0(\hat{x} + \hat{y} + \hat{z})$. The field encounters Medium 2, which has a boundary with Medium 1 that comprises the x-y plane. There is no surface charge. Write an expression for the electric field in Medium 2, $\overrightarrow{E_2}$ = ?

Medium 1, $\epsilon = \epsilon_0$

6. Field from a Wire (20 points) We have an infinitely long, cylindrical conductor of radius R carrying a current I with a non-uniform current density $J = \alpha r$, where α is a constant. Find the magnetic field \vec{H} everywhere.

7. Current from a coil (20 points): Consider a cylindrical metal shell with conductivity σ placed inside a long solenoid of length *l* with *N* turns driven to produce a magnetic field in free space. The shell is continuous (i.e., no gap like in the homework problem). The current in the solenoid is increasing linearly in time for all time: $i(t) = kt$, where k is a positive constant (units of A/s), with a direction as indicated in the figure. The shell has dimensions shown, where $d \ll a$.

What is the current density \vec{J} *flowing in the metal shell?*

Note: This is different from the homework problem, where there was a small gap in the cylinder. This cylinder is continuous all the way around.

8. Capacitance (20 points)

Consider a spherical capacitor of two concentric conducting spheres with inner radius = *a*, outer radius = *b*. The inner sphere carries $+Q$ charges and outer sphere carries $-Q$ charges.

(a) Find the potential in region $a \le r \le b$ and the capacitance of this spherical capacitor. Use ε_0 for the primitivity between the spheres.

Now we fill half of the empty space between the spheres by a hemispherical shell of dielectric $\epsilon = \epsilon_1$.

- (b) Calculate the electric fields \vec{E} and electric flux density \vec{D} in each half.
- (c) Calculate the surface-charge distribution on the inner sphere as well as the capacitance of the entire capacitor.

9. Inductance (20 points)

Consider a tightly wound concentric solenoids. Assume that the inner solenoid carries current I₁ and the magnetic flux on the outer solenoid Φ_{B2} is created due to this current.

- (a) What is the mutual inductance L_{21} ?
- (b) These coils can be used as car ignition coil. Spark jumps across gap in a spark plug and ignites a gasoline-air mixture.

Given N_1 = 16,000 turns, N_2 = 400 turns, l = 10 cm, r_1 = 3 cm, r_2 = 8 cm. A current through the primary coil $I_1=3$ A is broken in 10^{-4} sec. What is the induced emf?

10. Plane waves (20 points)

- a. A uniform plane wave with $\vec{E} = E_x \cdot \hat{x}$ propagates in a lossless medium ($\varepsilon_r = 4$, $\mu_r = 1$, σ =0) in the z-direction. If E_x has a frequency of 100 MHz and has a maximum value of 10^{-4} (V/m) at t = 0 and z = 1/8 (m),
	- a) Write the instantaneous expression for \vec{E} and \vec{H} ,
	- b) Determine the locations where E_x is a positive maximum when t=10⁻⁸ s.