UCLA Department of Electrical Engineering EE101 – Engineering Electromagnetics Winter 2012

Quiz 1, January 31 2012, (20 minutes)

Name	Student number

This is a closed book quiz – no notes or equations.

Please be neat – we cannot grade what we cannot decipher.

	Topic	Max Points	Your points
Problem 1	Electric field	50	
Problem 2	Capacitor	50	
Total		100	

$$\nabla \cdot \mathbf{D} = \rho_f$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$$

$$\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$$

$$\mathbf{M} = \chi_m \mathbf{H}$$

$$\mathbf{B} = \mu \mathbf{H}$$
Electrostatic Potential:
$$\mathbf{E} = -\nabla V \quad \text{Vector potential:} \quad \mathbf{B} = \nabla \times \mathbf{A}$$
Gradient Theorem:
$$\int_a^b (\nabla f) \cdot d\mathbf{I} = f(b) - f(a)$$
Divergence Theorem:
$$\int_s^a (\nabla \cdot \mathbf{A}) dV = \oint_s \mathbf{A} \cdot d\mathbf{S}$$
Stokes's Theorem:
$$\int_s (\nabla \times \mathbf{A}) \cdot d\mathbf{S} = \oint_C \mathbf{A} \cdot d\mathbf{I}$$
Electric energy density:
$$W_e = \frac{1}{2} \mathbf{E} \cdot \mathbf{D} \quad \text{or} \quad W_e = \frac{1}{2} \varepsilon E^2 \quad \text{(in linear media)}$$
Magnetic energy density:
$$W_m = \frac{1}{2} \mathbf{B} \cdot \mathbf{H} \quad \text{or} \quad W_m = \frac{1}{2} \mu H^2 \quad \text{(in linear media)}$$
Capacitance:
$$C = \frac{Q}{V} \quad \text{Inductance:} \qquad L = \frac{\Lambda}{I} = N \frac{\Phi}{I}$$

Capacitance:

1.

Consider a spherical shell of charge (volume density ρ). $\varepsilon = \varepsilon_0$ everywhere. When giving answers, don't forget the vector direction.

(a) What is the E-field for R < a?

Use Gauss's Law
Rea SE.dS = Qenebert = 0

[E=0 Rea]

(b) What is the E-field field for R > b?

E must be in radial direction due to symmetry $\oint_{S} \vec{E} \cdot d\vec{S} = \frac{\Omega_{\text{enclosed}}}{\Omega_{\text{enclosed}}} \qquad \frac{\Omega_{\text{enclosed}}}{\Omega_{\text{enclosed}}} = \frac{4\pi(b^{3}-a^{3})\rho}{2\pi(b^{3}-a^{3})\rho}$ $|\vec{E}| = \hat{R} \frac{(b^{3}-a^{3})\rho}{3\varepsilon_{0}R^{2}} \qquad R>b$

2. Consider a parallel plate capacitor with a potential difference V_0 applied across the plates. On the left figure, sketch the electric field lines **E** inside the dielectric, and the location and sign of the free charge. On the right side, sketch the polarization field **P**, and sketch the location and sign of the bound charge. **Please be precise and neat!**

Page 4 of 5