Midterm #1 of EE101B

Winter, 2014 (Closed Book, 1 Hr)

Name	:	
UID	:	

Problem #1. (10 points) Please answer following questions.

(1) [5 points] The left block below shows WRONG four Maxwell's equations. Please correct them and rewrite CORRECT four Maxwell's equations on the right block.

WRONG Maxwell's Eqs.

$$\nabla \cdot \vec{E} = \rho$$

$$\nabla \cdot \vec{H} = \rho$$

$$\nabla \times \vec{B} = \frac{\partial \vec{E}}{\partial t} + \vec{J}$$

$$\nabla \times \vec{E} = \frac{\partial \vec{B}}{\partial t}$$

CORRECT Maxwell's Eqs.

$$\nabla \cdot \vec{D} = P_{v}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

(2) [5 points] Briefly describe the physical meaning of the intrinsic impedance η in a uniform plane electromagnetic wave. What is its unit?

The intrinsic impedance 1 in a uniform plane EM wave is defined as the ratio of electric field to magnetic field.

$$\eta = \frac{E}{H}$$

The unit of Ω is ohm (Ω) .

Problem #2. [20 points] The electric field of an electromagnetic wave propagating in a medium is given by

$$\ddot{E}(x, y, z, t) = \hat{x} \cdot 4\cos\left(2\pi \cdot 3 \times 10^6 t - \frac{2\pi}{50}z\right) \quad \left[\frac{V}{m}\right]$$

where t is time in second and z is in meter. Please answer following questions. Make sure to write units if they are required.

(1) [2 points] Is this medium lossless or lossy?

(2) [2 points] What is the propagating direction of this wave?

(3) [2 points] Is this wave linearly polarized or circularly polarized or elliptically polarized?

(4) [2 points] What is the frequency, f?

(5) [2 points] What is the wavelength, λ inside the medium?

$$\lambda = \frac{2\pi}{k} = 50 \text{ m}$$

(6) [2 points] What is the phase velocity, v_p?

$$V_P = \frac{\omega}{R} = \frac{2\pi \cdot 3 \times 10^6}{2\pi / 50} = 1.5 \times 10^8 \text{ m/s}$$

(7) [2 points] Suppose this medium is nonmagnetic (relative permeability $\mu_r = 1$), what is the relative permittivity ε_r (also called dielectric constant)? We can use he following equation: $k = \beta = \omega \sqrt{\mu \varepsilon} = \frac{\omega}{v_p}$.

$$\frac{V_p}{C} = \frac{1}{\sqrt{\epsilon_r}} \implies \epsilon_r = 4$$

(8) [2 points] Find the associated magnetic field $\ddot{H}(x,y,z,t)$. Assume that the intrinsic impedance is η .

$$\vec{H}(x, y, z, t) = \frac{1}{\eta} \hat{k} \times \vec{E}$$

$$= \frac{1}{\eta_0 / \sqrt{\epsilon_r}} \hat{z} \times \vec{E}$$

$$= \frac{1}{bo\pi} \hat{y} 4\cos(2\pi \cdot 3 \times 10^6 t - \frac{2\pi}{50} z) \left(\frac{A}{M}\right)$$

(9) [2 points] What is the phasor form $\vec{E}(x,y,z)$ of this electric field?

$$\vec{E}(x,y,z) = \hat{x} 4e^{-\frac{2\pi}{50}z} \qquad (V/m)$$

(10) [2 points] Suppose a 1 m^2 surface area on the x-y plane. What is the time-averaged power flow over this area? Assume that the intrinsic impedance is η .

$$\vec{S} = \vec{E} \times \vec{H}^* \qquad \eta = 60\pi \Omega$$

$$\vec{S} = \hat{z} \frac{4^2}{60\pi} \qquad (W/m^2)$$

$$\vec{P}_{aw} = \frac{1}{2} |\vec{S} \cdot \vec{A}| = \frac{1}{2} \times \frac{4^2}{60\pi} = \frac{16}{120\pi} W = 42.4 \text{ mW}$$

$$\vec{S} = \hat{z} \frac{|\vec{E}|^2}{2\eta} = \hat{z} \frac{8}{\eta} (W/m^2)$$

$$\vec{P} = \frac{8}{\eta} (W)$$