[CS M51A W13] Solution to Quiz 3B

Date: 03/01/13

TA: Gabriel Pan (pansh@cs.ucla.edu)

Quiz Problems (50 points total)

Problem 1 (15 points)

Minimize the number of states of the system that correspond to the table shown below. Show the final minimized table. The input is x and the output is z.

	Inp	out
PS	x = 0	x = 1
A	E, 0	C, 1
B	A, 1	J, 0
C	D, 0	F, 0
D	J, 0	K, 1
E	A, 0	E, 1
F	A, 0	G, 1
G	J, 0	A, 0
H	A, 1	D, 0
Ι	K, 0	B, 1
J	D, 0	K, 1
K	I,0	B, 1
	NS	S,z

Solution Looking at the output values, we can write $P_1 = (A, D, E, F, I, J, K)$ (output 0/1), (C, G) (output 0/0), (B, H) (output 1/0)

From here we move to:

			gr	oup	1			g	2	g	3
		D	\mathbf{E}	\mathbf{F}	Ι	J	Κ	C			Η
0	1	1	1	1	1	1	1	1	1 1	1	1
1	2	1	1	2	3	1	3	1	1	1	1
$P_2 = (A, F), (D, E, J), (I, K), (C, G), (B, H)$											
	ı		I			I	~			1	_
	g	1		g2		e e	<u>3</u>	g	4	g	5
									4 G		Η
0											Η
0 1									$\frac{4}{G}$		Η

	g1	g2	g	3	g4	g	5		6	g	7
	А	\mathbf{F}	D	J	Ε	Ι	Κ	\mathbf{C}	G	В	Η
0			3	3						1	
1			5	5		7	7	2	1	3	3
$P_4 =$	=(A)), (F)), (D	,J)	, (E),	(I,	K),	(C),	(G),	(B, I)	H)
	g1	g2	g	3	g4	e e	<u>5</u>	g6	g7	1	g8
	Α	\mathbf{F}	D	J	Е	Ι	Κ	\mathbf{C}	G	В	Η
0			3	3		5	5			1	1
1			5	5		8	8			3	3
•		g2 F	3	3		5				B 1	H 1

Now $P_5 = P_4$ and no more reductions are possible. The minimal table is:

PS	x = 0	x = 1
G1	G4, 0	G6, 1
G2	G1, 0	G7, 1
G3	G3, 0	G5, 1
G4	G1, 0	G4, 1
G5	G5, 0	G8, 1
G6	G3, 0	G2, 0
G7	G3, 0	G1, 0
G8	G1, 1	G3, 0
	NS	S, z

Problem 2 (20 points)

Design a binary string detector using the state vector approach to cover all possible states, and deriving the minimum number of states afterwards. The detector takes a stream of binary bits as input, one bit at each clock. The output is 1 when it detects a string of 011, 100 or 110. The input signal is x(t), and the output signal is z(t).

1. (5 points) Fill in the empty slots in the state transition table.

Solution

PS	x = 0	x = 1
S_{init}	$S_0, 0$	$S_1, 0$
S_0	$S_{00}, 0$	$S_{01}, 0$
S_1	$S_{10}, 0$	$S_{11}, 0$
S_{00}	$S_{00}, 0$	$S_{01}, 0$
S_{01}	$S_{10}, 0$	$S_{11}, 1$
S_{10}	$S_{00}, 1$	$S_{01}, 0$
S_{11}	$S_{10}, 1$	$S_{11}, 0$
	NS	δ, z

2. (15 points) Minimize the number of states in the transition table, and show the final minimized table. Use G1 to G7 for the minimized group names.

Solution Looking at the output of the previous table, we first get P_1 as shown:

 $P_1 = (S_{init}, S_0, S_1, S_{00})$ (output 0/0), (S_{01}) (output 0/1), and (S_{10}, S_{11}) (output is 1/0).

		grou	р1	g2	groi	1р З	
	S_{init}	S_0	S_1	S_{00}	S_{01}	S_{10}	S_{11}
0	1	1	3	1		1	3
1	1	2	3	2		2	3

$P_2 = (S_{init}), (S_1), (S_0, S_{00}), (S_{01}), (S_{10}), (S_{$
--

	g1	g2	6	g3	g4	g_{S}	g6 C
	S_{init}	S_1	S_0	S_{00}	S_{01}	S_{10}	S_{11}
0			3	3			
1			4	4			

We can see that P_3 will be the same as P_2 and we stop here. By naming each group, we can write the following table.

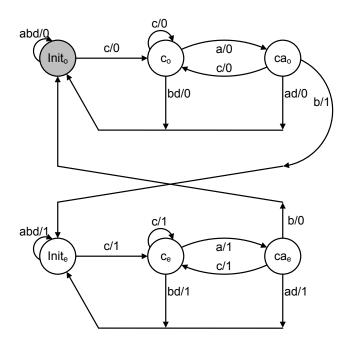
PS	x = 0	x = 1
G1	G3, 0	G2, 0
G2	G5, 0	G6, 0
G3	G3, 0	G4, 0
G4	G5, 0	G6, 1
G5	G3, 1	G4, 0
G6	G5, 1	G6, 0
	NS	δ, z

Problem 3 (15 points)

A sequential system has an input set $I = \{a, b, c, d\}$ and an output set $O = \{0, 1\}$. The system tracks the number of occurrences of the string *cab* in x(0,t). It outputs 1 if the value is an odd number and 0 otherwise. Show the state diagram of the system. Use the minimum-number-of-states approach. (*Hint: You may need multiple instances of the same string detector.*)

For each state, clearly show the transition path for all variables in the input set I and the output values. Clearly identify the initial state.

Solution We need two separate instances of the string detector for *cab*, one for the even case and one for the odd case. Every time we encounter the string *cab*, we jump from one detector to the other as shown. The initial state is shaded in gray.



For a Moore machine, all states for the odd case output 1, all states for the even case output 0.