## [CS M51A FALL 15] QUIZ 1

TA: Teng Xu (xuteng@cs.ucla.edu)



- The quiz is closed book, and closed notes (30mins).
- Please show all your work and write legibly, otherwise no partial credit will be given.
- This should strictly be your own work; any form of collaboration will be penalized.

Name: Weylong Xrong Student ID: 204407085

## Quiz Problems (50 points total)

## Problem 1 (10 points)

80

Find x and y such that the following conditions are satisfied and show all the steps of your work.

1. (5 points)  $(818)_9 = (x)_3$ 

$$8 \cdot 9^{2} + 8 \cdot 9' + 8 \cdot 9^{\circ} =$$

$$8 \cdot 9^{2} + 8 \cdot 9' + 8 \cdot 9^{\circ} =$$

$$8 \cdot 8 + 9 \cdot 8 + 8 =$$

$$8 \cdot 8 + 9 \cdot 8 + 8 =$$

$$1 \cdot 5 + 9 \cdot 8 + 8 =$$

$$1 \cdot 5 + 9 \cdot 8 + 8 =$$

$$1 \cdot 5 + 9 \cdot 8 + 8 =$$

$$1 \cdot 5 + 9 \cdot 8 + 8 =$$

$$1 \cdot 5 + 12 + 8 = 605 + 50 =$$

$$1 \cdot 2 + 2 \cdot 8 = 100 \text{ order } 0$$

$$1 \cdot 2 + 2 \cdot 8 + 2 \cdot 8 + 2 \cdot 27 + 2 \cdot 9 + 2 \cdot 8 =$$

$$1 \cdot 2 \cdot 2 + 2 \cdot 8 + 2 \cdot 8 + 2 \cdot 27 + 2 \cdot 9 + 2 \cdot 8 =$$

$$1 \cdot 2 \cdot 2 + 2 \cdot 8 + 2 \cdot 8 + 2 \cdot 27 + 2 \cdot 9 + 2 \cdot 8 =$$

$$1 \cdot 2 \cdot 2 + 2 \cdot 8 + 2 \cdot 8 + 2 \cdot 27 + 2 \cdot 9 + 2 \cdot 8 =$$

$$1 \cdot 2 \cdot 2 + 2 \cdot 8 + 2 \cdot 8 + 2 \cdot 27 + 2 \cdot 9 + 2 \cdot 8 =$$

$$1 \cdot 2 \cdot 2 + 2 \cdot 8 + 2 \cdot 8 + 2 \cdot 27 + 2 \cdot 9 + 2 \cdot 8 =$$

$$1 \cdot 2 \cdot 2 \cdot 2 + 2 \cdot 8 + 2 \cdot 27 + 2 \cdot 9 + 2 \cdot 8 =$$

2. (5 points) What is the largest number y that can be represented with 4 digit-vector in radix 5. Show y in radix 5 and decimal.

4 Juaits in radir 
$$5 = abcd$$
  
 $(a \cdot 5^{3} + b \cdot 5^{2} + c \cdot 5' + d \cdot 5^{\circ})_{10}$ :  
lore est dig t in radix 5 is 4, so  
 $a \cdot b = cd = 4$   
 $f = (4 + 4 + 1)5^{-1}$  contest number  
 $f = (624)_{10}$   
 $f = (624)_{10}$   
Problem 2 (16 points)

Solve the following problems using the postulates and theorems of Boolean algebra. Do not use a truth table.

1. (8 points) The Boolean function f is defined as f(a, b, c) = ac' + a'b and the Boolean function g is defined as g(a, b, c) = ac + b'c + a'b'. Show that g(a, b, c)' = f(a, b, c).

$$g(abc)' = (ac + b'c + a'b')' = (ac + b'c)'(a'b')' = (ac)'(b'c)'(a'b')' = (ac)'(b'c')' = (a'b')' = (a'b'c')(a'+c') = a(a'+c')(b+c') + b(b+c')(a'+c') = a(c')(b+c') + b(a'+c') = a(c')(b+c') + b(a'+c') = a(c' + a'b + bc' = c' + (ab) + (a'b) = c' + b + (a+a') = (c'+b) = c' + b + (a+a') = (c'+b) = c'+b + (a+a') = (c'+b) = (c'+b) = c'+b + (a+a') = (c'+b) = (c'$$

2. (8 points) Simplify the following expression.



×a'

## Problem 3 (24 points)

F is a function that accepts inputs  $x \in \{0, 1, 2\}$ ,  $y \in \{1, 2, 3\}$ , and outputs  $z = max(x^2, y)$ . Suppose you use binary code to encode x, y, and z. x is encoded as  $x_1x_0$ , y is encoded as  $y_1y_0$ , z is encoded as  $z_2z_1z_0$ .

1. (16 points) Fill in the table below.

| _ |       |       |       |       |                   |
|---|-------|-------|-------|-------|-------------------|
| ſ | $x_1$ | $x_0$ | $y_1$ | $y_0$ | $z_2$ $z_1$ $z_0$ |
| ſ | 0     | 0     | 0     | 0     |                   |
|   | 0     | 0     | 0     | 1     | 001               |
|   | 0     | 0     | 1     | 0     | 010               |
|   | 0     | 0     | 1     | 1     | 0 1 1             |
|   | 0     | 1     | 0     | 0     |                   |
|   | 0     | 1     | 0     | 1     | 0 0 1             |
|   | 0     | 1     | 1     | 0     | 010               |
|   | 0     | 1     | 1     | 1     | 011               |
|   | 1     | 0     | 0     | 0     |                   |
|   | 1     | 0     | 0     | 1     | 100               |
|   | 1     | 0     | 1     | 0     | 1 0 0             |
|   | 1     | 0     | 1     | 1     | 100               |
|   | 1     | 1     | 0     | 0     |                   |
|   | 1     | 1     | 0     | 1     | 1997 and 1883     |
|   | 1     | 1     | 1     | 0     | and a second      |
|   | 1     | 1     | 1     | 1     | dara datan Alban, |



2. (8 points) Fill in the sets in the forms specified below.

$$z_{2} = \sum m( \ 9, \ 0, \ 1)$$

$$z_{1} = \sum m( \ 2, \ 3, \ 6, \ 7)$$

$$z_{0} = \prod M( \ 2, \ 6, \ 9, \ 10, \ 1)$$

$$dc - set of \ z_{1} = dc ( \leq m( 0, \ 4, \ 8, \ 12, \ 13, \ 14, \ 18)$$