2 3

~* Instruction Count

; A. '_" Iv;ll_.',' ISA-bout Tradeoffs (15 points): Consider the following three properties:

® Hardware Complexiry (i.e the number of logic gates required to implement the hardware or the
COst to verify the design - the hardware is more difficult 10 design/verify)

tl?or the following design decisions, indicate how these three properties could be impacted. Your answer
or each should be that it either could increase, could decrease, or will stay the same. You may only
circle one answer per property. The first one is done for you as an example.

Example: Design Decision: Use a carry lookahead adder instead of a ripple carry adder.
® Instruction Count could increase could decrease <will stay the same>
® Cycle Time could increase <Could decrease> will stay the same
* Hardware Complexity <Could increase> could decrease will stay the same

a. Design Decision: Hardware that is designed to use a variable length instruction format instead of
a fixed length instruction format. -

® Instruction Count could increase could decre ill stay the same
will stay the same

® Cycle Time could increase ecreas
® Hardware Complexity increase could decrease will stay the same

b. Design Decision: Hardware that is designed with a smaller number of registers instead of a
larger number of registers.

e Instruction Count (7could increase) could decrease will stay the same
o Cycle Time could increase could decrease will stay the same
e Hardware Complexity could increase (could decrease will stay the same e

3 o

L S

c. Design Decision: Hardware based on a load-store machine instead of a register-memg
machine. a2

e Instruction Count could 1

P)

,,,,,,

-essor there are

2 Performance Anxiety (25 points): Suppose on a particular load-store machine-based pro<
four types of operations - loads, stores, bvnchc-.’::cALU operations (i.c. adds, subtracts, multiplics). ™S
will be implemented by other datapath - not the single-cycle datapath we covered in class s
take S cycles, stores takd 4 Qycles, branches take 3 cycles, and ALU operations také 4cycles. The
architecture is not pipelined — so no instruction latency is overlapped — Instructions are exccuted one at a
time, in order. Answer the questions below - show your work.
& What is the CPI for an application with one million instructions that is 30% loads, 10% stores, 40%
ALU operations, and 20% branches? (5 points). ‘

CPT = Quck ophs = D o
Wrebwiction Catt
©:3)(5)190%) « OSYN1204)r 0E)(10°) - (63)E) 5 (hs)4 (0 2)3
= [=10® 7 1.5 3 T 0.6

b. Now suppose that 50% of loads and 50% of stores can be eliminated by a new algorithm that makes
more effective use of memory. But the cost is increased computation — 25% more ALU operations
are required. What is the new CPI? :

takal num oF e |xicF + (L25)(9) 1x10* = (9)(:3) e - (501 P 3 9
= (1 +0.1 - 0.15 ~6.05) e
= Yo, 006

5 (0.9)(03) 12190 + w{psNon) kié + 4 (125) W) ixiF)r 3(02)ix¢) = 035+ 0-+2t6.6 = 394
0.9

" As an alternative (i.e. we keep the original algorithm from part a) suppose we try instead 1o increase S/
/ the speed of the processor clock. The clock frequency can be made 50% f: the latency of }
cach operation will also require 50% niore cycles. Ts the optifikation worth it? Calculate the :
speedup or slowdown over the original execution time of the algorithm from part a on the original
processor clock speed. 235

W row (PU timg= urs sefit *CPT _ (pT.,,. ((oYui

Clock rate. Ak

¥ ";,'.' :;"'v;. P y -, x - . 7 w‘u”
3 Give Up the Funk (30 points): Consider the single-cycle processor implementation. Your task

~ "m &”Mvﬁam instruction: the funkyb instruction. This instruction will be an R-type

~ instruction, and will have the following effect:

if (R[rs)<R[n))
PC=PC+4+R|[rs) // Note that these two statements
R[rd}=R[n] /f will be concurrent.

PC=PC+4+R[n) // Note that these two statements
R[rd]=R[rs] // will be concurrent.

Implement funkyb on the single cycle datapath. Use the R-1ype instruction format — so this instruction will
have the same opcode as all other R-types. Use a unique function field to modify the ALU controller to

implement this instruction, not the main controller.

Implement your solution on the following two pages. All other instructions must still work correctly
after your modifications. You should not add any new ALUs, register file ports, or ports to memory.

e, ‘“ MMCMMUCH
£ Ty ng delays: (30 points): Assume for the rest of this problem that all logic gates have the

FanIn | Delay
~L
2T
3T
ST
T
10T
7 or more | 2T x fan-in

||| —

S0 a 2-input AND gate would have delay T and a 4-input OR gate would have delay 3T.
For simplicity, assume that mux's have dclgardlcss of fan-in.

We will create a 32-bit adder out of some building blocks we've covered in class. We will use the 4-bit

CLA that we covered in class as one basic building block of this design. And we will use il (as we did in
class) to make 16-bit hicrarchical CLAs (HCLA) which will be our other buil
connecting these in series to make a 32-bit adder, we will use carry sclect to s
design will look as follows (be sure to note where we are using

ding block. But instead of
peed up the 32-bit adder. The
CLAs and where we are using HCLAs):

R ————

O

l.o.duwunumcdcuysofsm.mcn ~ the

full credit (ang .om""v of the design. Fill in the values in the table on the

by e okl & Mlomw
2 —— Elakelsd o
A (2 points) ‘
gg 2:::‘:::3) Usigy Llin. wnd) Ibrt
ints) N dor -
g" 3T (2 points) fif addy
12 B (A1) @2 points)
C15 Fre> Wl 2 points)
Cl6 X Boinis)
S15 % poinis)
€20 6T (2 points)
S19 B points) 6.
C24 e o il ian ‘D\g
C31 YT N (2 points ws b oy Y
C32 (after mux) | SR T UT=EIT |6 (2 points)
S31 (after mux)

Find the maximum delay in terms of T

., including the sum bits (Sy-S1;) and the final carry out (Csz). Show your work clearly in the table above.

=EAT (2 points)
& & €T :;f
of the 32-bit adder="Take the maximum of all output bits -

The two figures on the following pages are taken from the class notes, if you need to refer to them.

Maximal Delay:

T (2 points)

