UNIVERSITY OF CALIFORNIA, LOS ANGELES UCLA

BERKELEY . DAVIS = IRVINE = 1108 ANGELES * RIVERSIDE . SANDIEGO - SAN FRANCISCO SANTA BARBARA + SANTA CRUZ

CS M151B/EE M116C

Midterm Exam

All work and answers should be written directly on these pages, use the backs of pages if nesded.
This is an open book, open notes quiz — but you cannot share books or notes.

We will follow the departmental guidelines on reporting incidents of academic dishonesty — do not make us
enforce the rules. Keep your eyes on your own exam!

C ! \ s T
_'“ﬂ i \ /—T r)i
NAME P AN P (RS

15

Do not write anything in the area below on this page:

Problem 1: (16)
Problem 2: _ (30)
Problem 3: (25)
Problem 4: (20)
Problem 5: 9)

Total: (out of 100)

1.

L+)

(kﬂ’ 3\)

I Amdahl-ighted with Tradeoffs (16 points): For the following design decisions, list a benefit and a
drawback of the decision. Be brief, 1-2 sentences per benefit or drawback — but be specific in your
answers. The first one is done for you as an example.

Example:

Design Decision: Choosing to use 32 registers instead of 64 registers in an ISA.
Benefit: Fewer bits required to specify a register address and simpler register file implementation
Drawback: More register spilling may be required (i.e. more loads and possibly stores)

a. Design Decision: Using variable length instructions instead of fixed length instructions.
Beneﬁt: p CO‘Sr&|\(S t C\"\/{ ufj ‘n e (‘6 VA 3 Mo € ()\‘
/

Drawback: MoCe (om PW/(BQLLB VOB \” +he (_A:i-_;

-

b. Design Decision: Using a stack architecture instead of a load-store machine.

Benefit: 5 (mples inskCuckions | simples decoding
-
: - - | 1 -
Drawback: onoCe MEMOTN AccdlSES | highes 2L
A o

c. Design Decision: Using a larger immediate field for I-type instructions.

Benefit: | o W olues con 2 VoosDeo
K\V\ C"J\ aND ?' Sonil loe oc lul ‘?-
~ Ot o Spwes Cashess
Drawback: -~ - Crotne shoink > Feupr 2Pcod) 4
ofcodt 0f {fasgkts NElds S

d. Design Decision: Switching to a 64-bit datapath instead of 32 bits (i.e. data registers hold 64
bits, ALUs use 64 bits, memory addresses require 64 bits to specify — but instructions are still 32
bits and the number of registers stays the same). '
Benefit: Con ComPule widh \ocats nuwloEss §

huge wnufRady v memoty SPAce

Drawback:

C N A
~n Pt Y D A NA O
VG e.a. 75 A L \

2

Just Killing Time (30 points): The following question assumes the use of the small subset of MIFPS we
covered in class. We will examine the performance of a processor on a particular application, which has the
following breakdown: 15% beq instructions, 25% loads, 5% stores, 5% jumps, and 50% R-types. The

application executes 1 billion instructions. We will use the single cycle datapath for our implementation -
and further assume the following latencies for the major components:

Component Latency
Instruction Memory 2ns

32-bit ALU or adder | 2ns
Register File (read) 2 ns
Data Memory (read) | 3 ns

For the purposes of this problem, assume that the latency of all other components (i.e. muxes, wires) of the
processor are negligible compared to these major components and can be ignored. Further assume that the

time to write memory and the register file will not impact the cycle time as they will be triggered by the
clock edge.

a. Find the execution time of our test application on this processor.

1 2 q 5
| ’ \ > 1 Toriogn. Reaile, AL, D-pem
Wocsk coase t5 WO & iy 2
. q

e e A AL XIXD = | OS
v =

— =
cPL =1\

q
€€ = \O
Qq
' ((10 - q P
— — q-’\(\ \ J
!

b. We are going to evaluate removing base+displacement addressing for loads and stores in our ISA.

The benefit is that loads and stores will no longer need to use the ALU — so the latency of the ALU
will not be on the critical path for load/store instructions. This means that no operation will use both
the ALU and the memory, and assume that the datapath will be changed to reflect this. Loads and
stores will still use the I-type format, but the immediate field will simply be ignored in the datapath
for loads and stores. Note that other I-type instructions, like addi should still make use of the
immediate field and the ALU. Instead, any loads or stores that would actually have a nonzero
displacement (i.e. the immediate field of the instruction would not be zero), will have to make use of
an addi instruction first. So:

Iw 850, 8 (8s1)
would become

addi $s1, $s1, 8
Iw 8s0, 0 ($s1)

but
Iw $t0, 0 (8t1)

would not need an addi instruction since the immediate is already 0. 50% of loads and 40% of stores
have nonzero displacements. There are some other possible drawbacks to this optimization — for
now, assume that the only possible drawbacks are the ones discussed above. Considering this
change, indicate how the three components of execution time will be impacted by circling one of the
three choices for each component:

B

CPI will: ncrease decrease /sta the sa@
Nt
. .) / :
Cycle time will: increase '-;c;:@ stay the same

Instruction count will: @ decrease stay the same

¢. Assume the same optimization done in part b. As mentioned in part b, there may be other drawbacks
) to this optimization. Consider the example cited earlier:
(xu

Iw 850, 8 (§51)
would become

addi 8s1, $s1, 8
Iw 8s0, 0 ($s1)

This example assumes that the original value of §s/ is not required after the load instruction. If the
value of 85/ was needed (since it is a base address that may be used by many load instructions), then
we would need to use a new register — like this:

addi §10, 8s1, 8
Iw 850, 0 (810)

This can lead to an increase in register pressure — meaning that we need more loads and stores to
bring values to/from the register file from/to memory. Suppose that we now see 25% more loads
and 10% more stores from this register pressure, but assume that these new loads and stores always
use 0 displacement, so they do not need to be preceded by addi instructions, and do not themselves
further contribute to register pressure. Find the new execution time for this optimization.

— e S O 1 = - ;
C/ [r\fﬂu.‘ = 1;\“ Rl - Cic‘a 2 ncj —~ Q :-:-\ [
ETnew: b=
\ \’) A Y, /—\r_ 4 n’|‘-hcl,\(‘?"4“\ 4 WL \("16
’T\L,Q,\..'_) :'\“..J Jgu :, Q‘%D?’J\ L n'k-._)qﬁ \D - ‘\I.- S !x/, _~ E/ -\ - i_‘,: D,
=1 Q e — ‘6
o e o\ (Br e = EZ5 ¢ 10
New Wy Go9(s5m0 + (0DEMI® = 6
q
9 $. & _ |.ai29-\0
T — |0 « |49-w0 x 625\ = 1<
—t— VN‘_’U \
R A X\ - |2 ‘7:1 <
— w AN o L o T S A, DT I
= f‘l \ (',. L\ AV 10 == &

3

Single Cycle Psychosis (25 points): Consider the single-cycle processor implementation. Your task will be
to augment this datapath with a new instruction: the cai instruction (conditional assign immediate). This
instruction will be an I-type instruction, and will have the following effect:

if (M[R[rs]] == R]rt])
R[rt]=SE(I)

else
R[rt] = M[R[rs]] — R[rt]

Implement cai on the single cycle datapath. Use the I-type instruction format. LY

i - —

_Implement your solution on the following two pages. All other mstructlons must st111 work cor Tecﬂy

after your “modif fications.| | You should not add any new ALUs, register file ports, OT ports to Memory.
T ———

(x5)

(+x5)

®

A0 Reas e _
outeut D-Mam : —0
—> A Tead dodal Ton A
Tess . S lop AL
ﬂﬁ%;m inget
o Jokal O-Mem N |
e r\ b,.\H _Nma@,. m:LL/ ,.,/L_
Ual . R
L— Do CAT
G
M
===k u
/ .
ALU
Vhan_ result "\
VEE e e |
S iE —
4] _ N.,“ brs | !
| e . = s i
h Instruction [31-28] _ 1 gg \J - o . B -
m i
| - e
| — |
| ,] u ,“
v Instruction (25 21] Read m m
Read > | |
| PO *| address ﬁ register 1 Read | ﬁ
“ Instruction [20 18] Read dala 1 |
, ﬁ register 2 |
:mnm%g% , o - Registers Read| | Read
i M ite . s
Instruction 4* H_ register data 2 m Address i
LS i | instruction [18 11] x : {
= Write |
_ 0 A_. "l data EWMHM
: ; @ “ Wite i
] data
Instruction [15 Q) .._,m Sign Nr w
< @ A
{
Instruction [5 -0) W
H |
c/T; e
d ok A ?

MUx orteot (o4)

S lan Bt 5

O.un_ﬂﬂrunr_

>

Restile

W ie dado,

——

Ili.ﬂ\\.\\\lu

“7 oD
"

— Qo CAT

Main Controller

Input or Output | Signal Name R-format | lw | sw Beq COC _
Op5 0 1 1 0 o 1
Op4 0 0 0 0 L
Inputs Op3 0 0 1 0 0o !
Op2 0 0|0 I o0 i
Opl 0 1 1 0 o |
Op0 0 T 0 |o |
RegDst 1 0 X X o\
ALUSrc 0 T 0 o _1*
MemtoReg 0 1 X X O |
RegWrite 1 1 0 0 e
Outputs MemRead 0 1 0 0 20
Mem Write 0 o 0 O
Branch 0 0 0 1 . @
ALUOpI 1 0 |0 0 o ZS L
ALUOpO 0 0 |0 1 1 SERact
ot Jo fo Jo lo |1 |
ALU Controller
Opcode ALUOp instruction function ALU Action | ALUCtrl
Lw 00 load word XXXXXX add 010
Sw 00 store word XXXXXX add 010
Beq 01 branch equal | XXXXXX subtract 110
R-type 10 add 100000 add 010
R-type 10 subtract 100010 subtract 110
R-type 10 AND 100100 AND 000
R-type 10 OR 100101 OR 001
R-type 10 SLT 101010 SLT 111

4. Getting Carried Away (20 points): Assume for the rest of this problem that logic gates (with fan-in k) have
the following delays:

AND: kT
OR: 2kT
XOR: 3kT

So a 2-input AND gate would have delay 2T and a 4-input OR gate would have delay 8T.

For simplicity, assume that mux’s have delay 7T regardless of fan-in.

We will create a 32-bit adder out of the full adders we covered in class. We will use the 4-bit CLA that we
covered in class as the basic building block of this design, and we will use it (as we did in class) to make 16-

bit hierarchical CLAs (HCLA). And again, just as we did in class, we will connect three of these 16-bit
HCLAs together using a carry-select approach to make a 32-bit adder. The design will look as follows:

[

P
P o
-
S

A16-A31 S
B16-B31 |
ol

SoT47 T =S7T

- 516-S31
> C32

W

s

/ﬂ\‘

\ 22T+ 77 =237 |
[57E05) (i e =

In this diagram, A0-A15 indicates the lower 16 bits of one of the input operands (A), and A16-A31
indicates the upper 16 bits of the same input operand. Note that the upper 16 bits of the two input operands
are both used as input to the two 16-bit HCLAs in the right portion of the figure. S0-S31 are the sum bits,
and C32 is the carry out of the 32-bit adder. Note that the output of the HCLAS is actually 17 bits — as

labeled it branches off to 16 sum bits and 1 carry out bit.
— ——— e e —

“ <X I, Cealiky | o molkl~brt MUX (5 just sevecal 1-bt Muxes,
so 4dhe CHL ootput s independert F the S16-531 outputs.

Hou}e,eﬁ“j R4 A oV w< o4t ‘57-1-) thot's OK {00,
R

Your task is to find the maximal delay of this design — i.¢. the maximal delay of bits S0-S31 and C32 will be

the maximal delay of the design. Fill in the values in the table on the following page to receive full credit
(and to help with possible partial credit).

Output Delay
GO 3T (1 poing)
PO T (1 point)
Gl16 455 (1 point)
Go 18T (2 points)
Pot \OT (2 points)
(&) ANt (2 points)
Clé AT (2 poinis)
S15 SOT (2 points)
=< | C32 (after mux) 29T (2 points)
S31 (after mux) 57T (2 points)

Find the maximum delay in terms of T of the 32-bit adder — take the maximum of all output bits —

including the sum bits (Sp-S3;) and the final carry out (C32). Show your work clearly in the table above.
The two figures below are taken from the class notes, if you need to refer to them.

Maximal Delay: 57T (3 points)

X0
YO

X1
Y1

X2
Y2

X3
Y3
<sTEC!
b
SvEf

oo

v 4-bit CLA

L"‘—“

C1=G0+C0* PO

oo

| sTEf 3

!

o

C2=G1+G0*P1+C0°PO-P1

LETHYT =3DT
— N

€3=G2+G1°P2+G0*P1°P2+C0°P0+P1eP2

“I

CiSn: ety ClR atc-
,——--"‘"'“-—x\ G LN —
: \ 2A9°T /

Cd=_ .. > \[3/"%'“\,

YN AY o
~~————

6T 44T =107

-

o I
=) i Co 16-bit Hierarchical CLA
4 4-bit CLA *
= =1 e (sree 3|
T | e |STES 2)
— C4= GG +C0 e Pu —
= 4-bit —
-1 CLA —
[C8=Gg+Gy* Pg+C0* Py Pg
— 4-bit i
_| CLA e
= LT 18T (e}
“= S C12=GV+G|3.PY+GG.PB.PY+CO.PG.PB'PY
— 4-bit — \\‘”“— . BU43T = 247 ,/
1 CLA r— =
=] AT+ HT = 99T
Cc16 = —
Zj.;j*tﬂACTmP?PyPgﬂij
\———i_.__‘/-“-—_/

11

5. Silicon Salvaging Scenarios (9 points): This problem will present a number of scenarios where part of the
single cycle processor is not functioning correctly. For each problem, determine whether there is a way to
write code for the problem that will still make the processor perform correctly, briefly explain how, and
briefly explain the cost in terms of the components of execution time. You may not change the hardware or
ISA — just the programs that run on these. This kind of software workaround is useful in cases where there
1s a hardware fault or inefficiency, or even in patent infringement cases where you want to disable certain
hardware paths. Consider each scenario independently (i.e. only consider that there is one fault — the faults
do not accumulate). We will use the reduced set of MIPS instructions from class — so a basic set of R type
functions (AND, OR, INV, ADD, SUB), the LW and SW instructions, BEQ, and J (jump). You are
considering code that at some time or another will make use of all instructions in the ISA, so you must
ensure that all would work properly. The first will be done for you to illustrate the problem.

a. The ALUSrc control signal is stuck at the value zero (i.e. cannot be one).
1 Isthere a software workaround (yes or no)?

Yes

il If Yes, how would this be accomplished? If No, why not (be brief in either case)?
R types and BEQ will work normally (ALUSrc is 0 anyway). J will work normally (no
ALU required). LW and SW will be impacted — you cannot use base + displacement
addressing for loads and stores, and so you may need additional add instructions to
compute addresses — but it is worse than that. You would also need an add instruction

before each LW and SW to decrement the rs register by the rt register, since there will be a
forced add by the LW or SW instruction (i.e. R[rs] + R]rt]).

AN . X
\2/ b. The Zero output of the ALU is stuck at the value 0 (1.e. cannot be one).
i Is there a software workaround (yes orw

ii If Yes, how would this be accomplished? If No, why not (be brief in either case)?
\ b_f:_.f:(_'l Y e . H nexeS loe jir}\ii'ﬁ'/\} .

QEQ 0o2s not work (4he

i A > f [: <
No othec waow <o BO CO-"B o O ‘\,‘J""’“f?-

12

c. The output of the shift left (in front of the ALU for PC-relative address computation) is stuck at the

(*k %} value 8.
1 Isthere a software workaround!(yes or no)?

i1 If Yes, how would this be accomplished? If No, why not (be brief in either case)?
Con only bfandn +2 inshevckions, beq 5,4, domt-case |
‘{ beq ©5,¢5, donk . cosre :I
Y \oad\ csl‘aklla\ot\ ‘~. — | £ dodt wre l
5 3 label A
(+2 d. The rd field from the instruction is stuck at register specifier §7/ — this only affects R type
instructions (assume the problem is with the mux that is used to select RD for the write register
destination in the register file). The immediate fields for I and J type instructions are not impacted
by this error, nor is there any problem writing to rt in I type instructions.
i Isthere a software Workaround@ or no)?

ii If Yes, how would this be accomplished? If No, why not (be brief in either case)?

R—lc.:sg.ﬂ,& o{e £oCced o ?u% cesolk n FEL.

"] = V) V(‘r)) 2 & Ac. A
We can skill shote 40 memoty o g
lako oy CeRI54es
Exameler 0.59 $_~(;[) 63, btu\(
'_’_/_'_____/'

e v, 84 | —>

Sw $.’U; —"L{(‘:‘?S?)
- :#JLQ”-HUSS?)

O _

—

1 7_ \
=
'\.\gf‘n[u{;l’\:&: 7
: Ceq <° ok, Qownt—cact |
E\gec\ ¢S, Ty ’:o&ﬂ"& =) \oloel _
.F 4’60“\‘* (_&(‘ﬂ?
‘) ®
lobed im0 /
B\m\od?)
' P 3
\a\be_,lg-'{lk Qﬂj];\-'\t gof'\ &;ox"_tq /
\olotd 3% 5

13 =

