S

UNIVERSITY OF CALIFORNIA, LOS ANGELES UCLA
BEREELEY L] OAYIE = IRVINE L& AMCELES " RKIVERS DR . EANMEGD - SAMN FRANCIECD EAMTA BARAARSA -+ SanTA CRLE
CS MI151B/EE M116C

Midtcrm I~ xam

Before you start, make sure you have all 13 pages attached to this cover sheet.
All work and answers should be written directly on these pages, use the backs of pages if needed.
This is an open book, open notes quiz — but vou cannot share books or notes.

We will follow the departmental guidelines on reporting incidents of academic dishonesty — do not make us
enforce the rules. Keep your eyes on your own exam!

NAME:

ID:

Do not write anything in the area below on this page:

Problem 1: [0 (12)

Problem 2: (8)
LT
Problem 3: (20)

Problem4: U (20)

Problem 5: O o

Problem 6: 1-[(20}

a N
Total: T 9 (outof 100)

1.

(/[

Flipping Through Your Notes? (12 points): For the following implementation choices, list ONE benefit

and ONE drawback to the given choice.

Hse instead of COMLILERTs
EXAMPLE ; %
adds and shifts multiplies A Wtk { (1€ ol :
benefit: lower CPI -~ \ ﬁ\ﬂ}\\}ﬂﬁx"— 9% Y W
wback: higher instruction count o NV YV {GE i \"'&fQ_
Wy
CISC RISC
gy, AW IStchens pere sl T
. .7 oun L UL
il Mu‘l _-\"""1
drawback: [esS piprivis 7{ Fen kv G e T
el ellilite
Fixed Length ISA Variable Length ISA
fele i gudt :m‘ Hley o v
benefit: €y ¢ Inghevtiivn Lot
reGuive mult TiCe Lelrw

dfﬁwbﬂck: " jJ el
s y 3¢ o @r-.‘-‘-"

Booth’s algorithm 3”' version of rull.tltipuh.r algﬂrithm

mml;rf “i legs Compl
benefit’ foeec
ot bevflpes” . . ,[Mt o
£ et shrira) of 1% W g B
Multicycle Datapath Single Cycle Datapath
J!L Jer paghevehess ieapler LS~
benefit: > 1y @ j e 7
: .,1#5_'1"""‘-
drawhack: ot J all Trgtreett®™ T T e
w 5 P fyﬂ-{'@'{ }].4. l_:.-‘,
Lf_:.wrch:}l. L & e ?
Ripple Carry Adder J Parifal Carry N Todkahend Adder
| :
o e et petder Specd
benefit: =>'"F"" ° ke
drawback: L= #77¢ f

2-Address Code / 3-Address Code

\ -1 “{h‘;"lr J ot ' ' 1
O Mty ¥ m : {
benefit: S " . i whive pov Sor
bl o8 s i e L v Sl
drawback: = . _
boss Hlaxtbilfy p# [panih 1914
- |I "y &Hruﬁ ot {1- .E
|

- ‘_1'

(Assume your ISA supports one
or the other, but not hoth)

DEN N RS DRSO i e Seone o e - S]
4 _
r L};-/ 9

2. What's Happening Now (8 peints): Consider the following code sequence:

1w $t4,8(Ssl) 2 .
add $14, $s2, $14 4
sw §t4, 8 ($51) M

If we executed this on the single cycle datapath, what would be happening in the 3" cycle of
execution?

{ i) T data

J

b. If we executed this on the multicycle datapath, in what cycle would the sw actually write to

TR

at RTIEU) rs storeed Gw el RO 7Y

3. Got MAD? (20 points): This problem will make use of the multicycle datapath, using the design we
covered in class. Suppose that you are targeting a specific application where the instructions are broken
down as follows: 20% loads, 15% beg, 15% stores, 50% R-type.

a. First, calculate the CPI for this ap l:atmn runnm[&on the rnultlc}g:lq gq!:aplath
H = | i -
Pl = .1F§} *"W Y el)=\ HEE

.'("
/
/
Y

Now let’s add a new instruction to this architecture. This instruction, the memory add, will be an R-type
instruction that works as follows:

mad $tl, 512, 8t3

$t1 = $t2 + M[$t3]

NOTE — we are using register indirect addressing here for the second operand
We will replace every instance of

wa, 0B) 2
addx, a ¢ M

in the application with
madx, b, 5

where a, b, ¢, and x are registers. So we are putting two instructions in place of one instruction
whenever possible. Assume that the MAD instruction takes 5 cycles.

b. If 50% of loads can make use of this optimization, calculate the new CPI for this application
workload and machine:

3-: “E Ot .-c -_EL- = (a2 L3 M _L._\‘-‘j- %
'?.:‘ & Lj — 1 ad
[i Lo, 7
lees i 5 [i3 f i ot ,
15 o=
sV so O
(5 ',
) ruc 1o /,g s B /
o SNV ik la_‘!,.I tS RS il.r-'l\:u ."'I
s ':T:r Tl N
F"""‘H E ¥ LS
Wh-tﬂ:t;r o F .|'||l |
AL Lot

i (1 U\ + Yyl (
(P JITEBY & anlg) MH 3% AR)T
H.o JE8 = (4,06

Of course, we cannot really make a complete comparison between these two approaches without using
execution time. Assume that the complexity of this optimization increases the cycle time by 10%.

c. Calculate the percent speedup in execution time from this optimization: (if the optimization
results in a slowdown, express this as a negative speedup).

G= (L jped?
trT’cﬁ%“: FC X T3 & et
bW, oo 1
FTow = JFc x4H.03 'T'x'ﬁ? : T_;
S
ETrew =,4TC x H.0G *:--”_—_‘C*G;- =~ YT
_‘T—D
SP‘E-EEI-IFTE Lo %
LTt

o0 dup =-E o
|r_ 'I_t'_'i_;._J_JC!L

By way of comparison, calculate the CPI for the single cycle datapath with and without the MAD
instruction:

d. Single cycle datapath CPlyigga: | Single cycle datapath C‘PL?m t
/

e

" -9

T

4, Don’t Get MAD, Get Even (20 points): Implement the memory add instruction on the single cycle
datapath. Use the R-type instruction format. Implement your solution on the following two pages.

For the example instruction :
mad $t1, $t2, 53
which has functionality :
$t1 = $t2 + M[$t3]
the R-type fields would map as follows: $t1 would be in rd, $t2 would be in rs, and $t3 would be in rt.

All other instructions must still work correctly after your modifications. You should not add any new
ALUs, register file ports, or ports to memory.

s
: e

£¢

i

=

e

> Add
i —
Read
7| address
Instruction
3 o
Instruction
FreErmory

Instruction |31 -26] D
- o

Instruction (25 21]

Raglst
Branch

b
‘H!::n

MemRead

PCSn:

MemioRag

ALUCH

Membirite

k]

ALLISie

~| register 4 Read
Instruction [20 18] ¥ Roed data 1
_ ” | register 2
j . Registers gaaq :
M o VViite data 2
ik u registar ..”____
Instruetian [15 11} .w | Wite u
" | data x
, L]
18 : -
Instruction [15 -0} A @.ﬂm _
v |lextend| v _m. L ,
g STmA
ok
| nstruction [5-0] En
4 ™ -,
) e N
M W {
A)

BL

vy

.

Main Controller

Input or Output | Signal Name R-format | lw | sw Beg
Op5 0 A 0
Op4 0 0 |0 0
Inputs Op3 0 0 |1 0
Op2 0 0 0 1
Opl 0 1 |1 0
Op0 0 1 |1 0
RegDst 1 0 X X
ALUSrc 0 1 1 0
MemtoReg 0 1 X X
RegWrite 1 1 0 0
Qutputs MemRead 0 1|0 0
MemWrite 0 0 1 0
Branch 0 0 0 1
ALUOpl 1 0 |0 0
ALUOpO 0 Jd |0 1
ALU Controller e
opcode ALUOp instruction function ALU Action | ALUCtrl Ak
lw 00 load word XXXXXX | add 010 To
sw 00 storeword | XXXXXX |add 010 D
beq - 01 branch equal | XXXXXX | subtract 110 E-EN
R-type 10 add 100000 add 010 8
R-type 10 subtract 100010 subtract 110 O
R-type 10 AND 100100 AND 000 %)
R-type 10 OR 100101 OR 001 O
R-type 10 SLT 101010 SLT 111 - Q
[yt N EEERITDE \oto))

5. Branching Out (20 points): Use the multicycle datapath to implement the memory jump and link (mji)
instruction. This instruction uses the I-type instruction format, and has the followin g behavior:
o ;'Q
il 853, 854
mjl 853, 3s (EQ_, e »

will do the following;

A 853k PC+4
PC = M[$s54+20]
pListy

Note that this instruction uses base+displacement addressing (i.e. we use the value in register $s4 plus
the immediate value 20). Further note that we are storing PC+4 into $53 before we modify the PC in the
next line.

For the I-type format, the rs field will give the base address (i.e. 554 above), the immediate field will
give the displacement (i.e. 20 above), and the rt field will give the register to store PC+4 (i.e. $53
above).

Implement this instruction on the following two pages. All other instructions must still work correctly
after your modifications. You should not add any new ALUs, register file ports, or ports to memory.

m...f

.wé..r
|
P G s v
Powma |

e ¥ | Outputs \ALUOS
MermRead | i
b erte| Contral | ALUSIEA
_u.ll.ynl-l.rllllr.lll MemlaRed r Regitiite

Jump
widress [31-0]

w
(] = o
®EE

| AL L O i—

r

MemRead
ALUSreA =0
lorD =0

Instruction decode/
ragister fetch

Instruction feich

ALUSrcA =0

Start IRWrita ALUScB=11
ALUSrcB = 01 ALUOp = 00
ALUOp = 00
PCWrite ‘x_\
PCSource =0 } \
R L)
A {Dp = -
M address _gW)
0= wonen 3/ B | g
b _,Lw'} of Execution completion 4 completion
(OP_ 6 8
ALUSIA =1
ALUSrcA = 1 ALUSrcA =1 ALUSrCB = 00 B
Gy ALUSrcB = 00 poci = PCSource = 10
ALUCP =00 ALUOp= 10 PCWriteCond -
PCSource = 01
b
L o
B Memory Memary
[§ access BCCess ¥ R-type completion
] T
RegDst= 1
MemRead MemWrite RegWrits
lorD =1 lorD = 1 MemtoReg = 0
| Vrite-nank siep
RegDst=0
REgWr'EI‘.B 3 w
MemtoReg=1
O =i JL

10

6. Your Problems Are Multiplying (20 points): Consider the 2-bit Booth’s Algorithm that you did on your
homework. Assume that shifts take S seconds and adds/subtracts take A seconds.

a. Assume that we are using 16-bit numbers. What is the worst case latency from this version of
Booth's algorithm? Express in terms of A and S, and assume that shifting by two is the same
cost as shifting by one — still S seconds. Further assume that you already have the multiplicand
and the multiplicand<<1 stored in temporary registers before the start of the algorithm.

H-SH-OHDHo4o
Si‘u.{: ﬂr‘\f‘{'rll Ln{: ‘;] i *':,,.. ";ir--’:_ =

Mﬁpp{ —}'i-‘.‘.r‘t._ |-1_; Cin P LJI_!I || E.r.f' .-.._-,' o b
gl"-. L
g (5~
1!'1 oS +EA

4

Now, we will try and quantify A and S a little further. We will look at a 16-bit ALU and a 16-bit right
shifter. Assume that a multiplexor has delay 2T. However, your design template has trouble with
AND/OR/XOR gates that use more than two inputs.

Use the following table to get the delay for AND/OR/XOR gates wih different # of inputs:

of inputs | Delay
2 T
3 2T
4 3T
5 4T
6 5T

11

So the delay of a 2 input OR gate would be T, a 3 input OR gate would be 3T, a 4 input OR gate would
be 3T, and a 5 input OR gate would be 4T.

You must use these delay values for all parts of this question. Express all answers in terms of T.
SHOW YOUR WORK ON THE DIAGRAMS!

b. What is the delay of this 16-bit shifter?

O e g |
”IFEL”IIHTWE; 1L ”J}ﬂ *

@E? . ﬁl 0 mmmwm

ARG = I A I'I\ 'f!._.'T 2

/.

¢. On the next page we have the same 16-bit hierarchical carry lookahead adder (CLA) from class.
Using the same delay values as above, what is the delay to get the sum bits for this adder?

>< rl.|'}

~F

4-bit CLA

X0

G
Y0 P
X1

&
Y1 s
X2

G
b - B
X3

G
Y3 :

1 #Ao3 + ble 70 GileP1.P3 ¢ Go «Plef2 P32
= FfJ-Fﬂ-Fr-P; \|':--I:;.
HF . E

a =M 4-bit CLA |
e s
E = 3T +EeT 4T
E =l 4-pit s
e GLA ! —— I. : ‘{' H‘: T-
et F -)
" =
s} —

