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Flipping Through Your Notes? (12 points): For the following implementation choices, list ONE benefit

and ONE drawback to the given choice.
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2. What's Happening Now (8 peints): Consider the following code sequence:

1w $t4,8(Ssl) 2 .
add $14, $s2, $14 4
sw §t4, 8 ($51) M

If we executed this on the single cycle datapath, what would be happening in the 3" cycle of
execution?

{ i) T data

J

b. If we executed this on the multicycle datapath, in what cycle would the sw actually write to
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3. Got MAD? (20 points): This problem will make use of the multicycle datapath, using the design we
covered in class. Suppose that you are targeting a specific application where the instructions are broken
down as follows: 20% loads, 15% beg, 15% stores, 50% R-type.
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Now let’s add a new instruction to this architecture. This instruction, the memory add, will be an R-type
instruction that works as follows:

mad $tl, 512, 8t3

$t1 = $t2 + M[$t3]

NOTE — we are using register indirect addressing here for the second operand
We will replace every instance of

wa, 0B) 2
addx, a ¢ M

in the application with
madx, b, 5

where a, b, ¢, and x are registers. So we are putting two instructions in place of one instruction
whenever possible. Assume that the MAD instruction takes 5 cycles.

b. If 50% of loads can make use of this optimization, calculate the new CPI for this application
workload and machine:
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Of course, we cannot really make a complete comparison between these two approaches without using
execution time. Assume that the complexity of this optimization increases the cycle time by 10%.

c. Calculate the percent speedup in execution time from this optimization: (if the optimization
results in a slowdown, express this as a negative speedup).
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By way of comparison, calculate the CPI for the single cycle datapath with and without the MAD
instruction:
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4, Don’t Get MAD, Get Even (20 points): Implement the memory add instruction on the single cycle
datapath. Use the R-type instruction format. Implement your solution on the following two pages.

For the example instruction :
mad $t1, $t2, 53
which has functionality :
$t1 = $t2 + M[$t3]
the R-type fields would map as follows: $t1 would be in rd, $t2 would be in rs, and $t3 would be in rt.

All other instructions must still work correctly after your modifications. You should not add any new
ALUs, register file ports, or ports to memory.
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Main Controller

Input or Output | Signal Name R-format | lw | sw Beg
Op5 0 A 0
Op4 0 0 |0 0
Inputs Op3 0 0 |1 0
Op2 0 0 0 1
Opl 0 1 |1 0
Op0 0 1 |1 0
RegDst 1 0 X X
ALUSrc 0 1 1 0
MemtoReg 0 1 X X
RegWrite 1 1 0 0
Qutputs MemRead 0 1|0 0
MemWrite 0 0 1 0
Branch 0 0 0 1
ALUOpl 1 0 |0 0
ALUOpO 0 Jd |0 1
ALU Controller e
opcode ALUOp instruction function ALU Action | ALUCtrl Ak
lw 00 load word XXXXXX | add 010 To
sw 00 storeword | XXXXXX |add 010 D
beq - 01 branch equal | XXXXXX | subtract 110 E-EN
R-type 10 add 100000 add 010 8
R-type 10 subtract 100010 subtract 110 O
R-type 10 AND 100100 AND 000 %)
R-type 10 OR 100101 OR 001 O
R-type 10 SLT 101010 SLT 111 - Q
[yt N EEERITDE \oto ) )



5. Branching Out (20 points): Use the multicycle datapath to implement the memory jump and link (mji)
instruction. This instruction uses the I-type instruction format, and has the followin g behavior:
o ;'Q
il 853, 854
mjl 853, 3s (EQ_, e »

will do the following;

A 853k PC+4
PC = M[$s54+20]
pListy

Note that this instruction uses base+displacement addressing (i.e. we use the value in register $s4 plus
the immediate value 20). Further note that we are storing PC+4 into $53 before we modify the PC in the
next line.

For the I-type format, the rs field will give the base address (i.e. 554 above), the immediate field will
give the displacement (i.e. 20 above), and the rt field will give the register to store PC+4 (i.e. $53
above).

Implement this instruction on the following two pages. All other instructions must still work correctly
after your modifications. You should not add any new ALUs, register file ports, or ports to memory.



_m_...f

.wé..r
|
P G s v
Powma |

e ¥ | Outputs \ALUOS
MermRead | i
b erte| Contral | ALUSIEA
_u.ll.ynl-l.rllllr.lll MemlaRed r Regitiite

Jump
widress [31-0]

w
(] = o
®EE

| AL L O i—




r

MemRead
ALUSreA =0
lorD =0

Instruction decode/
ragister fetch

Instruction feich

ALUSrcA =0

Start IRWrita ALUScB=11
ALUSrcB = 01 ALUOp = 00
ALUOp = 00
PCWrite ‘x_\
PCSource =0 } \
R L)
A {Dp = -
M address _gW)
0= wonen 3/ B | g
b _,Lw'} of Execution completion 4 completion
(OP_ 6 8
ALUSIA =1
ALUSrcA = 1 ALUSrcA =1 ALUSrCB = 00 B
Gy ALUSrcB = 00 poci = PCSource = 10
ALUCP =00 ALUOp= 10 PCWriteCond -
PCSource = 01
b
L o
B Memory Memary
[ § access BCCess ¥ R-type completion
] T
RegDst= 1
MemRead MemWrite RegWrits
lorD =1 lorD = 1 MemtoReg = 0
| Vrite-nank siep
RegDst=0
REgWr'EI‘.B 3 w
MemtoReg=1
O =i JL

10




6. Your Problems Are Multiplying (20 points): Consider the 2-bit Booth’s Algorithm that you did on your
homework. Assume that shifts take S seconds and adds/subtracts take A seconds.

a. Assume that we are using 16-bit numbers. What is the worst case latency from this version of
Booth's algorithm? Express in terms of A and S, and assume that shifting by two is the same
cost as shifting by one — still S seconds. Further assume that you already have the multiplicand
and the multiplicand<<1 stored in temporary registers before the start of the algorithm.
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Now, we will try and quantify A and S a little further. We will look at a 16-bit ALU and a 16-bit right
shifter. Assume that a multiplexor has delay 2T. However, your design template has trouble with
AND/OR/XOR gates that use more than two inputs.

Use the following table to get the delay for AND/OR/XOR gates wih different # of inputs:

# of inputs | Delay
2 T
3 2T
4 3T
5 4T
6 5T
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So the delay of a 2 input OR gate would be T, a 3 input OR gate would be 3T, a 4 input OR gate would
be 3T, and a 5 input OR gate would be 4T.

You must use these delay values for all parts of this question. Express all answers in terms of T.
SHOW YOUR WORK ON THE DIAGRAMS!

b. What is the delay of this 16-bit shifter?
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¢. On the next page we have the same 16-bit hierarchical carry lookahead adder (CLA) from class.
Using the same delay values as above, what is the delay to get the sum bits for this adder?
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4-bit CLA
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