
UNIVERSITY OF CALIFORNIA, LOS ANGELES UCLA

CS M151B / EE M116C

Midterm Exam

Before you start, make sure you have all 11 pages attached to this cover sheet.

Please put your name at the top of each page.

All work and answers should be written directly on these pages to help in assigning partial credit, use the
backs of pages if needed. Be as neat and clear as possible.

This is an open book, open notes quiz – but you cannot share books, notes, or calculators.

NAME: __

ID: __

Please do not write anything in the area below on this page:

Problem 1: ___________ (15)

Problem 2: ___________ (12)

Problem 3: ___________ (6)

Problem 4: ___________ (20)

Problem 5: ___________ (20)

Problem 6: ___________ (20)

Total: ________________

``

BERKELEY • DAVIS • IRVINE • LOS ANGELES • RIVERSIDE • SAN DIEGO • SAN FRANCISCO

SANTA BARBARA • SANTA CRUZ

 1

Fall 2004 NAME ___________________________________

1. Execution Time (15 points): You are asked to choose between two approaches to reducing the impact

of loads on processor performance on the multicycle datapath. For this problem, assume that R-type
instructions (add, sub, and, or, and slt) account for 45% of all executed instructions, stores account for
15%, loads account for 20%, and branches account for 20%. Further assume that the application we are
considering executes one million instructions and that the processor uses a 4 GHz clock.

a. What is the execution time for the application we are considering on the machine described
above?

ETa is _____1.0e-3 s_________

CPI = .20 * 5 + (.45+.15) * 4 + .20 * 3 = 4
Cycle time = 0.25e-9

IC = 1.0e6

ET = CPI x cycle time x IC = 1.0e-3

b. One architect proposes a technique that increases load execution to 6 cycles (from 5 in the

original datapath). However, this technique increases the clock rate of the processor by 15%.
Calculate the execution time for the given workload with this change.

ETb is ____0.91e-3 s____________

CPI = .20 * 6 + (.45+.15) * 4 + .20 * 3 = 4.2
Clock rate = 4GHz * 1.15 = 4.6 GHz
Cycle time = 0.217e-9
IC = 1.0e6

ET = 0.91e-3

 2

Fall 2004 NAME ___________________________________

c. Another architect observes that many load instructions do not use their offset field (i.e. the offset
is zero) and are closely followed by an add instruction that increments the result of the load by
some other register. For example:

lw r5, 0 (r8)
add r5, r5, r7

This architect proposes to replace such instances with a single new instruction, law, that will
perform the load and add together:

law r5, r8, r7

This instruction will have the following functionality:

 R[r5] = M[R[r8]] + R[r7]

The law instruction takes 5 cycles, and has no impact on the cycle time of the processor.
Assume that 50% of loads can make use of this optimization. Calculate the execution time when
using this approach.

ETc is _____.9e-3 s___________

50% of loads use this optimization – so 50% of the 20% of instructions that are loads means that
10% of all instructions will be law.

Each law instruction replaces an lw and an add. A law takes the same number of cycles as a lw –
so the 5 cycle instructions will stay the same. But the 4 cycle instructions will be reduced.

 CPI = .20 * 5 + .20 * 3 + .50 * 4 = 4

 .9

you could also have intuitively seen that this optimization only removes 4 cycle instructions (the
law and lw effectively contribute the same amount to CPI) – and no matter how many 4 cycle
instructions are removed, the CPI will still remain 4 unless the balance of 3 and 5 cycle
instructions change.

 IC = .9e6 <- IC does drop by 10%

 Cycle time = .25e-9

 ET = .9e-3

 3

Fall 2004 NAME ___________________________________

2. Impacting Performance (12 points): For the following, circle how the proposed change will impact
CPI, # of instructions executed, and cycle time (i.e. an answer might be that CPI will increase, # of
instructions executed will remain the same, and cycle time MAY decrease). Consider the multicycle
datapath. Provide a brief justification of each answer and make sure you address each of the three
components by clearly circling ONE option from each group.

Loads can only use the base addressing mode – the base+offset addressing mode is completely
removed from the ISA. Any load that requires base+offset addressing will need to use an add
instruction before the load to perform the addition.

CPI will / may increase / decrease / stay the same
Every load will require 4 cycles instead of 5. (We’ll get rid of the stage/step/cycle #2 for loads)*

instructions will / may increase / decrease / stay the same
executed
Every load that require base+offset calculation must be “augmented” by an add.**
cycle time will / may increase / decrease / stay the same

Cycle time was determined as a maximum of memory access time, ALU time and register file
access time. Even if ALU were the greatest of those three, cycle time wouldn’t change, since
we’ll need ALU for other instructions (R-type, beq, sw)

*Assuming we have loads in our program. Otherwise CPI is unchanged.
**Assuming we have Loads that need base + offset. Otherwise # instructions is unchanged.

3. Cycle Counting (6 points): For the following code:

add $s1, $s2, $s3
add $s4, $s5, $s6
lw $s7, 0 ($t8)

 How many cycles will this take to execute on:

a) the single cycle datapath we explored in class
3

b) the multicycle datapath we explored in class

13

c) the pipelined datapath we explored in class (assume NO hazards of any kind)
7

 4

Fall 2004 NAME ___________________________________

4. Carry Select Adder (20 points): A 1-bit carry select adder is shown below – a 1-bit adder is replicated
to compute both possibilities for CarryIn (1 and 0). The CarryIn signal is then used to choose which of
the Result and CarryOut signals to output for that bit of the computation.

We will evaluate the use of carry selection with carry lookahead – the hope is that our carry lookahead
hardware will accelerate the selection process of the carry select adder. The following page shows two
figures that should be familiar to you, a 4-bit carry lookahead adder and a 16-bit carry lookahead adder
that is made up of four 4-bit carry lookahead adders. We have already examined these adders in class.
For this problem, assume that each 1-bit adder of the 16-bit carry lookahead adder is a 1-bit carry select
adder. Further assume that inverters have a delay of T and logic gates AND, OR, XOR, NAND, NOR,
and XNOR have delays of 2T associated with them (where T is measured in seconds). Treat the
multiplexor as a special case that has a delay of M (where M is also measured in seconds).
*** NOTE THAT THESE DELAYS ARE DIFFERENT FROM WHAT WE DID IN CLASS! ***

a. What is the estimated delay for the 16-bit carry lookahead adder made up of carry select
adders (should be in terms of T and M)? So each 1-bit adder will be a carry select adder.
You will want to measure the maximum delay to compute the output bits (16 Result bits, and
1 CarryOut bit). Show your work on the diagram on the next page by labeling wires with the
time when a given value will be ready (in terms of T and M).

Maximum delay of all output bits = ____14T + M____

b. Carry select requires two adders for each bit – to justify this extra hardware, how large can M

be without the loss of any possible performance advantage? Express in terms of T.

 M < ____2T______

 Assuming sum bit implemented with a single XOR gate

1-bit
adder

a

b

Result CarryOut

CarryIn
1-bit

adder

1 0

 2

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31 26]

4

16 32
Instruction [15 0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU

Address

 3

Main Controller
Input or Output Signal Name R-format lw sw beq

Op5 0 1 1 0
Op4 0 0 0 0
Op3 0 0 1 0
Op2 0 0 0 1
Op1 0 1 1 0

Inputs

Op0 0 1 1 0
RegDst 1 0 X X
ALUSrc 0 1 1 0
MemtoReg 0 1 X X
RegWrite 1 1 0 0
MemRead 0 1 0 0
MemWrite 0 0 1 0
Branch 0 0 0 1
ALUOp1 1 0 0 0

Outputs

ALUOp0 0 0 0 1

ALU Controller

Inputs Output

ALUOp function
ALU Action

ALUCtrl

LAW

00 XXXXXX Add 010 0
00 XXXXXX Add 010 0
01 XXXXXX Subtract 110 0
10 100000 Add 010 0
10 100010 Subtract 110 0
10 100100 AND 000 0
10 100101 OR 001 0
10 101010 SLT 111 0
10 110000 Add 010 1

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15–11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15–0]

Sign
extend

3216

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5–0]

Instruction
[31-26]

Instruction [5–0]

M
u
x

0

2

Jump
address [31-0]Instruction [25–0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3

2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

1

0

$t9

lac
3

2

$t9 = 25

USrcB = 10
ALUOp =00

RegDst=0
RegWrite

MemtoReg=1

ALUSrcA= 0
ALUSrcB= 11
ALUOp= 00

MemRead
ALUSrcA = 0

IorD= 0
IRWrite

ALUSrcB= 01
ALUOp =00

PCWrite
PCSource = 00

Instruction fetch
In

PCWrite
PCSource = 10

ALUSrcA= 1
ALUSrcB= 00
ALUOp =01
PCWriteCond

PCSource= 01

ALUSrcA=1
ALUSrcB= 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg =0
MemWrite
IorD= 1

MemRead
IorD =1

ALUSrcA= 1
AL

struction decode/
register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

(Op= 'LW') or (Op= 'SW') (Op = R-typ
e)

(O
p= 'BE

Q'
)

(O
p

=
'J'

)

(Op= 'SW')

(O
p

=
'L

W
')

4

0
1

9862

753

Start

Lac =1
AluSrcA = 10 (mem)

AluSrcB = 00 (rt)
AluOp = 01 (sub)

PcSource =11 ($t9)
PCWriteCond

10

Op=Lac

or
Op=Lac

or
Op=Lac

