
1.

1a. Cycle Time is based on the longest latency and lw will require the use of all modules.

Cycle Time = Register Read + Register Write + Data Memory + ALU + Instruction Memory

Yin/Yang: 100 + 100 + 250 + 150 + 200 = 800 ps

Spade: 80 + 80 + 220 + 120 + 180 = 680 ps

Omega: 90 + 90 + 230 + 130 + 190 = 730 ps

Infinity: 70 + 70 + 210 + 110 + 170 = 630 ps

1b. ET = CT * CPI * IC

CPI = 1 because it is a single cycle datapath

IC = 10 * 10^9

Yin/Yang: ET = 800 * 10^-12 * 10^10 = 800 * 10 ^-2 = 8 seconds

Spade: ET = 680 * 10^-12 * 10^10 = 6.8 seconds

Omega: ET = 7.3 seconds

Infinity: ET = 6.3 seconds

2. RegDst:

- lw: R[Imm[15…11]] =M[SE(IMM) + R[rs]}

- lw requires RegDst to be 0. It is supposed to save the value from memory into register

Rt, but if RegDst is 1, it will store the value from memory into the register specified

by the upper 5 bits of the immediate field, which is arbitrary.

- No other types will be affected. R-Types require RegDst to be 1 and sw and beq allow

RegDst to be “Don’t Care” because they specify RegWrite to be 0.

AluSrc:

- lw and sw require AluSrc to be 1, so they will work correctly

- R-Type: R[rd] = R[rs] OP SE(IMM)

- beq: if(R[rs] == SE(IMM)) then PC = PC + 4 + SE(IMM)

- If AluSrc is 1 then the second input into the ALU is the SE(IMM). This is used for

lw/sw, but in the case of R-Type instructions, you will not be doing an operation on

R[rs] and R[rt] as expected, you will do the operation on R[rs] and SE(IMM), where

the IMM is actually the Rd, shamt, and funct.

- In a branch, you are supposed to subtract R[rs] and R[rt] in order to determine if they

are equal. Instead, you will compare R[rs] and the SE(IMM) to determine whether to

branch.

Branch:

- beq requires branch to be 1 so beq works correctly.

- lw/sw: if(R[rs] + SE(IMM) == 0) then PC = PC + 4 + SE(IMM)

- R-Type: if(R[rs] OP R[rt] == 0) then PC = PC + 4 + SE(IMM)

- lw and sw will do the correct memory/register operations, except if the output of the

ALU happens to be 0, then the PC will branch to PC + 4 + SE(IMM), which should

never happen in lw/sw.

- R-Type will also do the correct register write operation, except if the output of the

ALU happens to be 0, then the PC will branch to PC + 4 + SE(IMM) where IMM is

actually the rd, shamt, and funct.

AluOp1:

- ALUOp1 is the most significant bit in ALUOp. ALUOp1 is required to be 1 for R-

Type instructions so R-Type instructions will work fine.

- lw: R[rt] = M[R[rs] OP SE(IMM)]

- sw: M[R[rs] OP SE(IMM)] = R[rt]

- beq: if(R[rs] OP R[rt] == 0) then PC = PC + 4 + SE(IMM)

- load and store will both operate on the right values, but the operation should be to add

the base address with the offset. However, because the opcode is now 10, the

operation will be defined by the “funct” field, which is actually the least significant 6

bits of the IMM, which is arbitrary.

- beq will also operate on the right values, but the operation should be subtract to

compare the equality of R[rs] and R[rt]. Now the opcode is 11, which means that

operation will be arbitrary or undefined.

3.

Both branches are taken once, then not taken. We predict not taken, which means that the

first time that each branch is reached, they will mispredict not taken. Because branch

resolution occurs in EX stage, there is a 2 instruction/cycle penalty. With full forwarding the

only dependency that must result in a single stall are load dependencies where a load is

immediately followed by a dependent instruction. The actual set of instructions that will enter

the pipeline are as follows. Load dependencies are highlighted. See attached for clock cycle

chart.

lw $t0, 8($t1)

lw $t3, 0($t0)

add $t0, $t2, $t3

bne $t0, $s1, HERE

add // Mis-prediction

lw // Mis-prediction

add $t0, $s0, $t0

beq $t1, $s3, THERE

sw // Mis-prediction

next // Mis-prediction

lw $t0, 8($t1)

lw $t3, 0($t0)

add $t0, $t2, $t3

bne $t0, $s1, HERE

add $t0, $s0, $t0

lw $t0, 0($t0)

add $t1, $s1, $s2

add $t1, $t0, $t1

beq $t1, $s3, THERE

sw $t1, 0($t9)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

lw $t0, 8($t1) IF ID EX ME WB
 lw $t3, 0($t0)

IF ID {EX} EX ME WB

 add $t0, $t2, $t3

IF {ID} ID {EX} EX ME WB
 bne $t0, $s1, HERE

{IF} IF {ID} ID EX ME WB

 add //WRONG

{IF} IF ID --
 lw //WRONG

IF --

 add $t0, $s0, $t0

IF ID EX ME WB
 beq $t1, $s3, THERE

IF ID EX ME WB

 sw //WRONG

IF ID --
 next //WRONG

IF --

 lw $t0, 8($t1)

IF ID EX ME WB
 lw $t3, 0($t0)

IF ID {EX} EX ME WB

 add $t0, $t2, $t3

IF {ID} ID {EX} EX ME WB
 bne $t0, $s1, HERE

{IF} IF {ID} ID EX ME WB

 add $t0, $s0, $t0

{IF} IF ID EX ME WB
 lw $t0, 0($t0)

IF ID EX ME WB

 add $t1, $s1, $s2

IF ID EX ME WB
 add $t1, $t0, $t1

IF ID EX ME WB

 beq $t1, $s3, THERE

IF ID EX ME WB
 sw $t1, 0($t9)

IF ID EX ME WB

4.

Read
register 1

Read
register 2

W rit e
register

W rit e
data

W rit e
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15– 1 1]

Instruction [20–16]

Instruction [15–0]

RegDst

Branch

MemRead

MemtoReg

ALUOp

Mem W rit e

ALUSrc

Reg W rit e

Control

M
u
x

1

0

M
u
x

1

0

rmr rmr

rmr

rmr

 rmr 0 0 0 0 1

rmr

New code

0

1

1

0

1

0

0

1

1

rmr 11 AND then Load AND 0000

