UNIVERSITY OF CALIFORNIA, LOS ANGELES UCLA

BERKELEY . DAVIS . IRVINE » 1.OS ANGELES * RIVERSIDE . SANDIEGO - SANFRANCISCO SANTABARBARA + SANTA CRUZ

CSMI151B/EE M116C

Midterm [xam

All work and answers should be written directly on these pages, use the backs of pages if needed.
This is an open book, open notes quiz — but you cannot share books or notes.

We will follow the departmental guidelines on reporting incidents of academic dishonesty — do not make us
enforce the rules. Keep your eyes on your own exam!

Sﬁf@f;ém

NAME:

1D:

Do not write anything in the area below on this page:

Problem 1: (10)
Problem 2: (40)
‘Problem 3: (50)

Total: (out of 100)

1. Tradeoffs (10 points):
a. Assume that the single cycle datapath we covered in class executes an application which has a mix

of 25% lw instructions, 15% sw instructions, 20% beq instructions, and 40% R-type instructions.
Given this particular mix of instructions, what is the CPI of the single cycle datapath?

CPIL: 1

b. The pipelined datapath we covered in class may ultimately reach a steady state where one instruction
is in each stage of the pipeline. Assuming no hazards, how many cycles would it take for the 5-stage
pipeline we covered in class to reach the steady state?

L v -
Cycles: J _or th)
Ve @éﬁ o . }f/ f) //\(f/
[/é{/{f ,;",./;%Q/f(@ ¢ o em

c. Data hazards may be resolved in software through code reordering or nop insertion. Another option
is to use stalls in hardware to avoid data hazards. Compare these two alternatives:

el
i CPI would likely be 7774/ (< with the software approach compared to the
hardware approach. (fill in the blank with the word larger or smaller)

// %7174
ii Instruction count would likely be i,/;{ff;fi/l/ with the software approach compared
to the hardware approach. (fill in the blank with the word larger or smaller)

2. BEQM (40 points): Consider the single-cycle processor implementation. Your task will be to augment this
datapath with a new instruction: the begm instruction. This instruction will be an I-type instruction, and will
have the following effect:

if (R[rt]==SE(]))
PC=M|[R][rs]]
else
PC=PC+4

Implement your solution on the following two pages. All other instructions must still work correctly
after your modifications. You should not add any new ALUs, register file ports, or ports to memory.

Thoe ave multple Solufions — to his
/‘7/0”3’/;;7/% anﬂ/ q/ y/ Hhen éawg b@&n/’/r@\

%Zl/ Cﬂed«/// i Cxe ?/Cofh?cfnwf

&n(/ one 0,/ Hen, shown here .

(= Fo
ALY - vesult

“r

\Smws@x% —_—

Read — fater

0
M
u
V>% AU 1
result Af
VEE e T Ay —
i] i
Instruction [31 26] | i1 mioRe o ..
Instruction [25 21] /7§ readl ‘ : m | |
Read ister 1 i AU | |
B e address Vo register Read(l] | i
Instruction [20 416] a% Read[] data 1 :
i register 2 : fer ,;
_:mﬁmwopﬁmuo:_a r 0 -l Dxmmﬂmﬁmqm Readtl _ ° VZ.C ALU ﬁ\w ensth
M rite data 2 | Address
Instruction] /@ register resuit data
memory) X
Instruction [15 4.1] Write[
Y[L | momry
. i] Write[]
data
Instruction [15 0] Mm Sign mm
N lextend [N

Instruction [5 -0]

ALU- \&@MM

m
o)= Adclvess

|
{

m@% N

o Dt Memnary

Main Controller

Input or Output | Signal Name R-format | lw | sw Beq r;/z:@:gz) *
Op5 0 1 1 0 o
Op4 0 0 0 0
Inputs Op3 0 0 1 0
Op2 0 0 0 1
Opl 0 1 1 0
Op0 0 1 1 0
RegDst 1 0 X X X |
ALUSre 0 1|1 0 0 |
MemtoReg 0 1 X X X |
RegWrite 1 1 0 0 2
Outputs MemRead 0 1|0 0 T
MemWrite 0 0 1 0 9, '
Branch 0 0 0 1)]
ALUOpl 1 0 10 0 0 |
ALUOpPO 0 0 |0 1 1
e4m 0 / o [° ({ 0 ! |
ALU Controller
Opcode ALUOp instruction function ALU Action | ALUCtrl
Lw 00 load word XXXXXX add 010
Sw 00 store word XXXXXX add 010
Beq 01 branch equal | XXXXXX subtract 110
R-type 10 add 100000 add 010
R-type 10 subtract 100010 subtract 110
R-type 10 AND 100100 AND 000
R-type 10 OR 100101 OR 001
R-type 10 SLT 101010 SLT 111
)| 9 Eam XXXXXL swhfract- /[9

3. Pipelining (50 points): Consider the 5-stage scalar pipeline we have explored in class, shown below.

IF/ID ID/EX EX/MEM : MEM/WB
. N —
Add ’\
Add
¢ Add resuit
Sistetl]
feft X
= Readd
—>1 Address .:—; register 1 Read]]
Z Read() datal|
instruction) = register 2
memory 1 R _Registers peaqf]] readl
WriteJ data 2 Address ead] !
register -
H Datall
writeO :
1 data H memory
; Write(J
data
tnstruction} :
{15-0} if sign 32 \a E
N textend \y et
tastructiond
{20-16]
o
mL .
Instruction[] u
[45-11] X
1

Branches are resolved in the MEM stage as shown in the figure above. Assume that instruction and data
memory are perfect —i.e. accesses only take a single cycle. Further assume that the pipeline is extended
to be able to handle addi and j instructions. These extensions still result in a 5-stage pipeline.

The following instruction sequence will be executed on this architecture:

THERE: addi $t2, $t2, 16
Iw $10, 4 ($12)
bne $t0, $s0, HERE
Iw $t1, 8 ($t2)

i ADDIT
HERE: lw $t1, 12 ($t2)
ADDIT: addu $s2, $t1, $s2

bne $s1, $t2, THERE

This sequence has two conditional branches (i.e. bne’s). The bne to HERE is taken every other time it
executes — i.e. the value loaded into $t0 by the first /w instruction is not equal to the value in $s0 50% of

~
[\S)
w
A
W
S
N
Co
o
~
~
~
~
~
~
~
~
~
~
SN
N
[\S]
w N
AN
SIS
SIS

addi $t2, $t2, |IF |ID |E
16

>
SEE
e

Iw $t0, 4 ($12) |
/

Y
e
AVYY

bne $t0, $s0,

w
HERE

T
S
S
A\l
3
AV

lw $t1, 12 A A .
7 W Nie 1y e
A%ﬁwv J\\ 1r x@ mwh m m

T~

77

addu $s2, $t1, .
$s2 IF|DID|E |m W

bne $s1, $t2, |~ w
THERE (F\m & m 'z

addi $t2, $t2,

16 { F 10| E|m|W

TN

Iw $t0, 4 ($t2)

,

bne $t0, $s0, = o= o
HERE JELIDID|E | M (7

lw $t1, 8 ($t2)

»E

i ADDIT

v

2

X

addu $s2, $t1, ﬂ \,‘ \” |
%mw (LN MF D \E

bne $s1, $t2, !
THERE | 0

NN
Co N
o N
w

the time. You may assume that the first time the bne to HERE is encountered, the branch is taken. The
next time it will be not taken, and so on.

The bne to THERE is taken once and then not taken — so it will be executed two times all together. You
only need to track the second instance of the bne to THERE, and do not need to worry about the
instruction after that second execution of the bne to THERE.

I suggest that you take some time to understand what exactly the instruction sequence is doing before
continuing with the rest of the problem.

a. First assume that data hazards are handled with full forwarding and branch hazards are handled
by a static prediction where all branches (including jumps) are predicted not taken. This
simplifies the hardware design since we do not need to worry about early determination of the
branch target. We are going to determine how many cycles it will take to finish the second
instance of the bne to THERE. Fill in the table on the following page to show when each
instruction is in each stage of the pipeline. The first instruction has been done for you. Make
sure you show your work in the table.

Total # of cycles: 2 ‘ff (40 points)

b. Now let’s try a dynamic branch predictor. Assume the 2-bit dynamic branch predictor from
class:

Not taken
. Predict taken
Taken :
Nat taken I Takan
Not takan
Predict not taken
Taken

The branch predictor is accessed in the instruction fetch stage to determine whether a particular
branch is taken or not taken. Assume that we have some other structure to predict whether an
instruction is a branch in the instruction fetch stage, and to what target address the branch may

o
go.

The branch predictor will have eight entries — each entry will hold two bits. The two bits will
represent one of the four states of the above FSM — 11 represents the strongly biased predict
taken state in the upper left, 10 represents the predict taken state in the upper right, 01 represents
the predict not taken state in the lower right, and 00 represents the predict not taken state in the
lower left. The branch predictor initially has the following entries:

Pl (nofeX
sy < ¢ |01
- 1 |10
2z [00
, - 3 |01
516 <— g |11
520 ,— 5 |00
£2¢ 6 |0l
52§ — 7 [0

The predictor is indexed as: (PC >>2) % 8. Where % is the modulo operation. The addi
instruction is stored at address 500. For the two instances of bne instruction to THERE, will the

predictor correctly predict the branch direction?

1% instance of the bne to THERE: caorrel 4 (correct or incorrect?) (5 points)

; Y VP, 'ﬂf’_ . .
2nd instance of the bne to THERE: /7 (#777€<[(correct or incorrect?) (3 points)

