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. Drawing a Blank? (15 points): Given the following statements, fill in the blanks with the terms below the
statement. You may reuse terms in case the statement has multiple blanks. Rather than writing the entire
term, just use the letter preceding the term to fill in the blank.

Ideally, the CPI for a single-issue (i.e. scalar) 5-stage pipeline would approach /)( :

A 10
B. 0.5
€ 3.0
D. 0.25
E 25

-—

b. A 5-stage pipeline that is initially empty would reach steady state in the r cycle, assuming it
does not encounter any hazards.

A, 1st
B. 2nd
C. 3rd
D. 4th
E. 5th

For a particular application, you try two different processors — Alpha and Beta. These processors
Alpha and Beta are identical except that Alpha’s L1 data cache has double the block size of Beta’s L1
data cache, but half the associativity. Their total size is the same though. You would think that Alpha

would do better on applications with lots of 6 and Beta would do better on applications
withlotsof £ .

Temporal locality

Spatial locality

Cold misses

Capacity misses

Conflict misses
Instruction-level parallelism

TmSARa

If your application mainly has stores that write an address once and have poor spatial and temporal

locality, then you should use a 5 cache.

A. Write through, write allocate
B. Write through, write around
C. Writeback, write allocate

D. Writeback, write around



Virtual memory provides A A . Choose all answers that apply.
SNV

A. Protection between applications
B. A larger memory space

C. Lower load latency

D. Fewer register spills

Your 5-stage pipelined architecture (with a 3 cycle branch penalty) currently uses hardware-based
stalling to deal with control hazards. If you were to use dynamic branch prediction (i.e. a table of 2-bit
predictors) you would expect that CPI would likely _[3 , cycle time could possibly /_’3 orC and
the instruction count would

A. increase
B. decrease
C. stay the same

. Your 5-stage pipelined architecture currently resolves data hazards with hardware-based stalling —no
forwarding logic. If you were to use NOP insertion instead, you would expect that CPI would likely
(3 , cycle time could possibly Bar C, and instruction count would likely A

A. increase
B. decrease
C. stay the same

Simultaneous multithreading (also known as hyperthreading) may help improve B but
can reduce C

A. ALU latency

B. Processor utilization (i.e. throughput)

C. Single thread performance (when run with other threads)
D. L1 cache latency

Direct Memory Access (DMA) means C/

A. that the processor can directly access memory instead of going through the TLB or page table

B. that the processor makes a translation from virtual to physical address, and then directly
accesses memory without going through the cache hierarchy

C. that /O devices can directly read/write memory without processor intervention

D. that cache can directly access DRAM without address translation



2. Hazard Countin’ (15 points): Assume you are using the 5-stage pipelined MIPS processor, with a two-cycle
branch penalty. In the following code:

loop: Iw 310, 0(8s0) \ \ LU~
beq $t0, 851, here) Sy ~ v T
Iw 812, 8(8s0)
addi $t0, 810, 4 \ 2
add $0, 812, 810 {
add $s0, 8s0, $t0.) _
here: Iw 810, 4(8s0). _°
add $t1, $t0, $t1
addi $s0, $s0, 16
bne $50, 852, loop/ \uwo ~ i
sw 8tl, 0($s3)

.

S pN\- o

We will measure the number of cycles to execute this code starting with the first /w instruction entering the
pipeline (assume it is not stalled by any hazards) and continuing until the sw at the bottom leaves the pipeline.
The bne at the bottom is taken 100 times. The beq is taken 50 times. Assume that all memory is ideal —i.e. we
have no cache misses to worry about. Further assume that these 11 instructions are stored contiguously in
memory.

a. Suppose we do not have any data forwarding hardware — we stall on data hazards. The register file 1s
still written in the first half of a cycle and read in the second half of a cycle, so there is no hazard from
WB to ID. We handle branch hazards with a branch predictor that always guesses branch not taken.
But this is only for conditional branches — jumps are handled differently and do not cause branch
hazards. Calculate the number of cycles that this sequence of instructions would take, and show your
work.

Total cycles:
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b. Now assume we have full data forwarding as covered in class, and we have an 8 entry, 2-bit branch
predictor with FSM as shown below. Assume that we use the simplified branch indexing formula:
index = (PC>>2) % predictor_size. The symbol % represents the modulo operator. Further assume
that all entries in the branch predictor start in the state at the upper left of the FSM. But this predictor
is only used for conditional branches — jumps are handled differently and do not cause branch hazards.
Calculate the number of cycles that this sequence of instructions would take, and show your work.

Not taken
Predict taken )
_//ﬁ Taken
Taken 1 ~ Nottaken [
. e Not taken T
: _Predict‘not-’_taken ) ( F’f?_d.ic.t.f‘léjt taken
= Taken i

Total cycles:
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3. Cache Me If You Can (20 points): Find the cache hit or miss stats for a given set of addresses.
The data cache we will evaluate is a 256B, direct mapped cache with 64-byte blocks. You are using a 48-bit
virtual address space, a 32-bit physical address space, and use 512B pages in your virtual memory. Your TLB
has 32 entries (i.e. locations to store translations) and is 4-way associative. Each entry in the page table has
one extra bit beyond the physical page number.

a. Find the hit/miss behavior of the data cache and TLB for the given byte address stream, and label
cache misses as compulsory, capacity, or conflict misses. All blocks in the cache and TLB are initially

invalid.
Address in Binary Cache Cache TLB
(all Jeading bits are 0’s) Hit or Miss Miss Type Hit or Miss

o | ...0101)100110 M C o7 (s M

< |...01]11010100 s - o Ul K

« | ..0lolo11100 H S K

A [...100d100110 M a3 M

41 .. 1110111000 M Cou .. (o H

e [ 1111p11000 M (oo lse

c |...0111]101100 m CorFlet

e |..1111]101010 ™ [

L [...1000D00000 I B

a | ...0101110010 H~a— ~Lopsein- v

13 190
b. What percent of the pages in virtual memory can fit in physical memory at one time? _, 39 2
21
c. How large (in bytes) is the page table? X" 36 :
s l

o
— 37
d. What fraction of the total number of page translations can fit in the TLB? 5 3 T - 2

e. What bits of a virtual address will be used for the index to the TLB? Specify this as a range of bits —
i.e. bits 4 to 28 will be used as the index. The least significant bit is labeled 0 and the most significant
bit is labeled 31.
=1
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4. Serial (Access) Killer (10 points): Consider the 4-way set associative cache we explored in class:

Address
31301211 1088---3210
I l [ ]
Jz2 J8
Tag
Index
index V Tag Data V Tap Dsta V Data V Data
1]
1
2
B el ety ol 9 e e e
253
254
255
hp -.hjﬂ
) - /| &
! L

This is known as a parallel access cache because the Tag and Data components are accessed in parallel.
Another way to design a cache is to put the components in series — a serial access cache. This type of cache
can be more power efficient, but has longer latency. At a high level, a serial access cache just looks like this:

Address

YV

The address is used to index the tag and data components of the cache, but only one way of the data
component is actually driven out (instead of all ways in the parallel access cache). The two outputs are still
the same (Hit and the Data Out).

One way to deal with the longer latency of this cache is to pipeline it over two cycles. The tag access is the
first stage of the pipeline, and the data access is the second stage. The next page has the serial access design in
more detail, but it is missing latches between pipe stages. Draw boxes on wires to indicate where values
should be saved in between cycles to have the correct behavior. Keep in mind that we want to have two
accesses to the cache in the pipeline at the same time (don’t worry about hazards). For timing purposes, we
will keep the 4-to-2 encoder, AND, and OR gates in the first stage of the pipeline, and the demultiplexor
(DEMUX) in the second stage of the pipeline. Don’t worry about the address offset.



Address

I Index | Offset |

_Data0

\

Tag1

vV

\

Tag2

HIT?

lr!r!r

4-to-2
Encpder

I

Data1

Data2

Data3

Y

vivd



; 5. Starting Some Static (Scheduling) (20 points): Consider the 2-way superscalar processor we covered in class
— a five stage pipeline where we can issue one ALU or branch instruction along with one load or store
instruction every cycle. This processor has data forwarding hardware. This processor is a VLIW machine.
Branches are resolved in the ID stage (i.e. a single cycle branch penalty) — and we use branch delay slots to
avoid any branch hazards. Consider the following loop:

Loop: o lw $t1, 0 ($s0)

o 1w $t2, 4 ($s0)

¢ addu$t2, $t1,1$12
\ Iw $t3, 0 $12)
, add $s2, $s2,8t3)
. addi $t0, $t0, 1
. addi $50, $50, -8
v bne $t0, $s1, Loop

a. First you will need to schedule (i.e. reorder) the code (use the table below) to reduce the total number
of cycles required (but don’t unroll it...yet).

Cycle 1™ Issue Slot (ALU or Branch) 2" Issue Slot (LW or SW)
: @ . [w J £ o
: () v 2o
’ ICH A (D
4 :ﬁ-l-k-" ¢ @

. AL #r < [w 3
° bre >

' afA 3 *

8

9

10

11

12

13




(this is the same loop as the page before — just replicated for your convenience)

Loop:

A\ 1w $t1, 0 ($s0)

W Iw §t2, 4 ($s0)
(\addu 812, $tT, St
Alw $3, 0 812)
¢ladd $s2, $s2,(5t3
(laddi $t0, $10, 1
~laddi $s0, $s0, -8
\bne $t0, $s1, Loop

b. Second, unroll the loop once (i.e. so the loop body contains two iterations) and schedule (i.e. reorder)

the code (use the table below) to reduce the total number of cycles required.

Cycle 1 Issue E{_)I_EALU or Branch) 2" Issue Slot (LW or SW)
: L{;ﬁi & | [u fe 3 O
’ 4 J b\ o g#2, ¥
o <A ffe B Ju F1Y -8
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6. You’ll be looking FORWARD to these HAZARDS just being a distant MEMORY ... (20 points): Consider

the scalar PiR?lin.. }1’9_1}5}{95&1}@;@_ in class, shown below.

0
M
u
x

1
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4
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For the rest of this question, this architecture will serve as the baseline that we will compare against. It has a 2
GHz clock, and the application that we are testing on this architecture executes 10 billion instructions.
Branches are resolved in the MEM stage as shown in the figure above. To handle branch hazards, we will
always predict that conditional branches will not be taken. Assume that we have some way of dealing with
jumps so that they never cause branch hazards. Conditional branches (beq and bne) are taken 30% of the time
with this application. To handle data hazards, we use data forwarding, just as we covered in class, stalling for
one cycle when a load is followed by a dependent instruction. 25% of loads are immediately followed by a
dependent instruction (i.e. the next instruction is dependent on the load). 10% of loads are followed by a
dependent instruction exactly two instructions later (i.e. the next instruction is independent of the load, but the
instruction after that is dependent on the load). And 5% of loads are followed by a dependent instruction
exactly three instructions later. 25% of instructions are R-type, 30% are loads, 20% are bne or beq, 10% are
jumps, and 15% are stores. We are using a 16KB direct mapped instruction cache with 32 byte blocks that has
a miss rate of 10% for this application. Our data cache is a 32KB 4-way set associative cache with 64 byte
blocks and a miss rate of 15%. And we have a unified L2 cache that is a IMB 8-way set associative cache
with 128 byte blocks and a miss rate of 5%. The L1 caches can be accessed in a single cycle, and the miss
penalty to go to the L2 is 20 cycles from both L1 caches. The L2 has a 150 cycle miss penalty. Assume that
stores may stall the pipeline — and should be considered in MCPI.
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a. Find the TCPIifor thisarchitecture an\d application. Show your work below:
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We are going to evaluate the benefit of 'g"r‘owing the register file from 32 to 64 registers. The key benefit from
this is a drop in register spilling that is required — this translates directly into a drop in the number of loads and
stores. We will need 1/3™ fewer loads and stores with this increase in registers. However, this change will
impact our ISA as we need more bits for specifying a register — but we will still only use 32 bits for each
instruction. This means we need to remove bits from other fields. For R format instructions, we will take the
bits from the shift amount field — and we will assume that this has no impact on the application we are using
(which does little shifting). The J format instructions will not see any impact. The I format instructions will
need to reduce the immediate field from 16 bits to 14 bits. Assume that this will not impact loads/stores, but it
will impact beg/bne instructions — 25% of bne/beq instructions need > 14 bits in their immediate field. To
address this, we will have 25% of bne/beq instructions branch to a jump instruction, and then use that jump to
branch further away. The drop in loads and stores means less pressure on the L1 data cache — the miss rate
drops to 10% with this change. The L2 cache and L1 instruction cache are unaffected by the change.

But after this change, we find that the latency of the register file is the critical path to determine our cycle time
and the clock rate has grown unacceptably high. We plan to pipeline the register file over two cycles —
effectively splitting the ID and WB stages into two each: ID1, ID2, WBI, and WB2. This will mean that we
can have two instructions reading the register file at once — one in ID1 and the other in ID2. But the register
value will not be ready until the end of ID2 — in other words, it takes a full two cycles to read or write the
register file. Assume that the register file has some internal mechanism to pipeline it over two stages — don’t
worry about the internals of the register file. Instead, we will worry about what happens when we read and
write the same register. Pipelining the register file over multiple cycles breaks our assumption that we can
write to the register file at the first half of the cycle and read from the register file in the second half. Instead —
we will have to add some additional forwarding hardware. At the ID2/EX latch, we will store one of three
values for R[rs], and one of three values for R[rt]. The muxes in front of the latch show these three options —
but two of these options for each mux are currently unconnected.

b. Your first task is to figure out where to connect these wires. This may require you to do more than just
hook up the wires somewhere — you may need to add latches and extend existing wires. Make your
modifications to the figure on the following page. There is no WB 1/WB2 register bank — so you can
use space in the ID1/ID2 register bank if you need to save any values between WBI and WB2. Focus
just on the flow of register values here — you may assume that other values like PC+4, the immediate,
and instruction bits 25-21, 20-16, and 15-11 are correctly latched and propagated. Also — do not worry
about forwarding from ID2/EX or EX/MEM - these stages will be handled by the normal forwarding
logic that we already have in place at the EX stage. The circle with the ? inside represents the
forwarding logic. We will fill in the internals of this logic in part ¢ of this question — it will control the
selection of the muxes using signals FRS and FRT. But be sure to add whatever other inputs are
necessary for the correct operation of this logic — you may want to look at the forwarding logic we
covered in class for hints on what to add.
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c. Now that you have set the datapath, write the forwarding unit logic for the FRS control signal (i.e. the
mux that determines what rfrs] value is propagated to the EX stage). HINT — the pseudocode that we
covered in class for the forwarding logic in the EX stage may be helpful to look at for this.

Forwarding Unit Pseudocode — just for the FRS control signal

=)
FRS =01
: ; / :
if ( T J/ pr. 7S =270 /1 7 rdy, v .ff
/ _ \
FRS =10

d. Assume that the changes in parts b and ¢ were made correctly and we can now correctly handle
forwarding from the WB stages to the ID stages. This means that there is no new data hazard between
the WB stages and the ID stages — but of course the pipelining may have worsened the existing hazards
in this architecture. Now let’s evaluate the TCPI of this new architecture (64 registers, and more
deeply pipelined ID and WB stages). Show your work below.
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e. Assuming that the cycle time is 10% lower in this new architecture than the original baseline, find the
speedup in execution time for the application we have been considering on the new architecture over

the old architecture. Express this as a % increase. Show your work.

[ %

Speedup of the new architecture over the baseline architecture:
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7 Bonus Round (Optional). Let me be clear — this problem is optional!! It is worth 10 bonus points — these

points will be added to your final exam, but will not impact the curve in any way — they are added after the
curve. This is only 10 bonus points, S0 I’d recommend you save this until you are sure you’ve done your best
on the rest of the exam. This problem will deal with dynamic scheduling — we will look at a relatively simple
out-of-order processor that has five main structures we will be concerned with: a 128-entry reorder buffer
(ROB), a 12-entry reservation station (RS), the register alias table (RAT), the architectural register file (ARF),
and two functional units (FUs). We will assume that the ROB holds output values for instructions that have
executed, but not committed. The ARF is the physical storage for the set of committed logical registers. The
RAT points a logical register to either the ROB or ARF. The RS holds register specifiers, input operand
values, ROB entry #s, and operations for instructions that have entered the scheduling and instruction
windows, but have not yet executed. Assume that the RS is just shared among both FUs — there is no
dedicated mapping of resources, as the RS is just a single architectural unit. We will consider functional units
to just be a combination of ALUs for execution and data caches for memory.

We will assume that instructions coming from the fetch unit go through three major phases:

a. Allocation — instructions are allocated space in the ROB and RS, and their registers are renamed in the
RAT. This takes one cycle, and up to two instructions may allocate in a single cycle. We can continue
to allocate up to two instructions every cycle as long as there is space in both the ROB and RS —
otherwise we stall.

b. Issue — instructions leave the RS to be executed in FUs. Once all input operands are ready for an
instruction in an RS, issue takes one cycle. We will assume that R-type instructions take just one cycle
to issue and execute, and that loads take 2 cycles to issue and execute. At the end of the cycle, the
instruction writes the value they computed into the ROB. We will assume that there are two FUs, so
up to two instructions may issue in a single cycle.

c. Commit — instructions leave the ROB, write to the ARF, and may modify the RAT. This takes a single
cycle — and up to two instructions may commit in a single cycle.

Allocation and Commit are done in original program order. Instructions can issue in any order. We will just
ignore stores and branches here, as these both complicate out-of-order execution beyond our working
example.

For the following sequence of code:

Iw 30, 0(8s0)
add $s1, $t0, 8s1
Iw $t0, 4($s0) ._ '
add 8s1, $t0, $sl
Iw 310, 8(8s0)
add $s1, $t0, $sl1
Iw 810, 12(8s0)
add $sl1, 8t0, $s1
Iw $t0, 16($s0)
add 8s1, $t0, $s1
Iw 80, 20(8s0)
add $s1, $t0, $s1



Assume that the first two instructions wen

contains the following register values:

In the following figures, fi

11 in the state that will be store

ARF

(only three entries shown)

Register | Value

$s0 4100

$s1 0

$t0 0

Memory

(only six entries shown)

Address | Value
4100 10
4104 20
4108 30
4112 40
4116 50
4120 60

t through allocation at cycle i. Prior to cycle i, the ROB and RS are

completely empty, all logical registers in the RAT are mapped to logical registers in the ARF, and the ARF

d in each structure at the end of cycle i+4. Ifan

instruction commits from the ROB, just check the “Committed?” entry to indicate that it has left the pipeline.
ROB

Index Instruction Result Committed?
0 |0
1 | O
2 20
3 :
4 P
5
6
7
8
9
10
11
12
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RS
Operation (i.e. | Register ID#1 | Register Value | Register ID#2 | Register Value | ROB Index
Add or Load)
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