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1. Hazardous Material (20 péints): Assume you are using the 5-stage pipelined MIPS processor, with a single-

cycle branch penalty.

Further assume that we always use predict not taken, and that the branch penalty is only

a single cycle. We achieve this single cycle branch prediction by doing the branch comparison in the ID stage.
Consider the following instruction sequence, created by a fairly bad compiler, where the loop is taken twice
before the program exits:

Loop :.

1 IOIG R N XX

addi 850, 358, 12

w $t0, 0(3s0)

addi 3t7, $10, 6

lw $t1, 4(3s0)
addi 316, $11, 5
add 314, 316, $t7
sw 3t4, 0(3s0)
addi $s0, 350, 1
bne $50, 3s1, Loop

a. Assuming that the pipeline is empty before the first instruction:

i. Suppose we do not have any data forwarding hardware — we stall on data hazards. The register
file is still written in the first half of a cycle and read in the second half of a cycle, so there is no
hazard from WB to ID. Calculate the number of cycles that this sequence of instructions would

take:
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ii. How many cycles would this sequence of instructions take with data forwarding hardware:
~ (HINT - consider how data forwarding and the changes we made for a single cycle branch
penalty would interact together)
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/ b. Reorder the code to eliminate all data hazards on a processor with data forwarding — obviously the
code must still work as intended.
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2. Caching In on the TLB (20 points): Consider the data cache for a processor that usesbyte addressed memory.
The cache is a 4KB 2-way set associative cache with an 8 byte block size that w acement within a
set. Stores on our processor use write around and write through. Our cache is virtuatty-indexed and
phys1ca11y tagged. We use an 8-wa set associative 1IKB TLB, and our virtual memory uses 16KB pages. We
have 2** B of virtual memory and 2*° B of physical memory. There are no extra bits required in each page
table entry aside from the bits needed for the physical page number.

Calculate the hit rate of the cache and TLB on the given stream of virtual byte addresses. Each address is_

shown in binary and in decimal. The type of instruction that accessed the data cache is also shown — load or T

store. Note that there are 6 unique byte addresses here — and that the sequence of six addresses is repeated to
make 12 total addresses below. Mark whether the cache and TLB has a “hit” or “miss” for each address — i.e.
'whether or not the desired memory address is found in the cache and whether or not the desired translation is
in the TLB. For the addresses — assume that “...” means all leading 0’s. Assume that the cache and TLB are
completely empty (all entries invalid) at the start of the stream. Classify each cache miss as capacity,
compulsory, or conflict (i.e. the type of miss). Only consider hits and misses — ignore the latency of cache or

TLB misses.
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3. The Good, the Bad, and the Ugly (12 points): For the following implementation choices, list ONE benefit and
ONE drawback to the given choice.

use instead of ___comments
EXAMPLE

adds and shifts ‘ multiplies

benefit: lower CPI

pipelined datapath multicycle datapath

benefit: lower CPI

drawback: C‘Mr‘\‘bﬁu bl B Lok resilidon

direct mapped cache set associative cache (with same number of entries)

benefit: Cosd yeasy to ‘m‘,\uww*

drawback: P"“‘\”\j \m}\u cacbotr oF panblict wiss.

Booth’s algorithm 1* version of multiply algorithm

benefit: siﬁned M»lHPL‘wHM

drawback:  new! (G b vndstand )

virtually indexed cache physically indexed cache (both use physical tags)
benefit: hethr pt'fo'mw. foe svus\g proass

drawback: hord do dhart doho \odhwan proceses L‘“"{"" coudent with L‘S\"

writeback writethrough (for a first level data cache)

benefit:  fuer wlem o ey locadin 15 writlen Yo ol ia Snert Hime FU\‘,&
drawback: 1(\,5,’,. Yaise Y%a\\-}

branch prediction branch delay slots (single cycle branch penalty)
benefit: S“ol Per&mw ¥ smcl FM(\‘L{M c,\usu\ wrthot auun.j o Su \P 3w
drawback: ’o%\‘g Ay odd {0 oren FO-W of rwa&hf




4. Slot, Delay, and Unroll (20 points): In this problem, we will schedule code to execute on a 2-way superscalar
pipelined processor. For this processor, assume that ANY two independent instructions can be executed in
each cycle — and that full data forwarding is provided. Assume that there is a single-cycle branch penalty, and
that the processor uses branch delay slots to resolve this single cycle penalty. Consider the following MIPS
fragment:

loop: Iw 810, 0(8s1)
Iw 3tl, 4(3s1) ..
add $12, $t0, $t1
addi $s1, 8s1, 4
addi 350, $s0, 4
sw 312, 0(3s1)
bne 350, $13, loop

Assume that $s0, $s1, and $t3 are initialized before the loop is entered, and that the loop will always be taken
a number of times that is a multiple of two. Unroll the loop once (i.e. to make two copies of the loop body)
and schedule the instructions. Be sure to fill the branch delay slots after the bne, placing nop’s if needed.

Cycle | 1% Issue Slot (for ANY instruction) | 2™ Issue Slot (for ANY instruction)
bhop : lw $to7 o 85V lw $t1 4 (89)

2 lw $15, T(8%) add ;" $s0, $S0, %
3| odd $tz, dto, d¢ oddi 451,451, 8
4 add $#6, stz $t5 bre 3So3t3, loop
3 Sw $'t2,« 4 (¢S ‘Swo i{&,' o(95)
6

7

8

9

10

11

12

13
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THIS SPACE LEFT BLANK FOR UNROLLING

(THE EXAM CONTINUES NEXT PAGE)
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5. Why, oh why, must we do TCPI? (40 points): We are going to assess branch and cache performance on the
pipelined datapath from class — we have full data forwarding. Our peak CPI is 1.0. Assume that 30% of
instructions are branches, and that we have a single cycle branch hazard on this processor. Our branch
predictor always guesses not taken. 50% of branches are not taken. Our processor has an instruction cache
and data cache — both take a single cycle to access. The instruction cache miss rate is 10% and the data cache
miss rate is 30%. The next level of the memory hierarchy is an L2 cache with a miss rate of 20% and an
access time of 10 cycles, this is in addition to the L1 cache latenc ain memory has an access time of 80
cycles, this is in addition to the latengy of the L1 and L2 caches. 20% of
not stall the processor on a cache miss. 3/5ths of loads have dep €nt instructions followmg them. | Our
target application executes 1,000,000 instructions. The processor clock runs at 2 GHz.

D2
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b. Calculate TCPI for our target application on our processor.
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c. Suppose 1/6™ of all branches are procedure calls. Each procedure call (i.e. a jal instruction) in our
application al€o has a return (i.e. a jr instruction). These will all be mispredicted because we always
guess not taken. One approach to reducing branch hazards in such a case is to in-line the procedure
call. The compiler basically takes the instructions in the body of the procedure call and replaces all
calls to that procedure with these instructions. This means that instead of the code:

add $s0, $s0, $t1
jal Target
add $s0, $s0, $t2
jal Target

Target: Iw $t3, 0 ($s0)
addi $t3, $t3, 200
sw $t3, 0 ($s0)
jr$ra

We would have the code:

add $s0, $s0, $t1
1w $t3, 0 ($s0)
addi $t3, $t3, 200
sw $t3, 0 ($s0)
add $s0, $s0, $t2
Iw $t3, 0 (8s0)
addi $t3, $t3, 200
sw $t3, 0 ($s0)

The benefit in this simple example is that we avoid four branches (two jal’s and two jr’s), but the size of
the instruction text segment in memory (i.e. the size of the actual program we are running) has increased.
Now, instead of the lw, addi, and sw being in one place in the text segment they are in two places. This
can increase the miss rate of the instruction cache.



Suppose that we try in-lining on our processor. In order for performance to improve, the cost of increasing

the instruction cache miss rate must not exceed the benefit of reducing branch hazards. Using TCPI as the
CPI in the equation for Execution Time, provide aﬁ uﬁer bound ;m the miss rate of the instruction cache

to improve performance when using in-lining. Assume that the L2 cache’s miss rate does not change.

The instruction cache miss rate must be <= 12.%
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d. Rather than do in-lining, we will try using a branch predictor on our architecture. Now instead of
always predicting not taken, we will use a variation on the 2-bit predictor that works as follows:

, ' Predict _
Taken

Predict
Not Taken

Tovo ‘>|ss:\n\. DS weTS
—

Ql\,r.ﬁ\d 2.\5 o o.SSkaonS-

__ Predict
Taken

Predict
Not Taken

Our predictor has a 1024 entries, and each entry has a 2-bit counter implementing the above diagram.
Each node represents one of the four states of the 2-bit counter. Each node is labeled with the
prediction that will be made when the counter is in that state. Each edge is labeled withanNT ora T.
NT means not taken, T means taken. When the predictor is in a given state, the edges represent the
next state in response to the actual direction of the branch — i.e. if the branch is not taken, but we are in
the predict taken state in the upper left corner of the figure, we will transition to the state in the upper

1 b right of the figure. |
B3] o Te ' Given the following stream of branch PCs, fill in the following table. Assume that each 2-bit counter
Aelp, ' starts in the upper left state. The first one has been done for you. o Assme M bt
o] / ——— PN
e, PC | ActualBranch Direction | Predicted Correctly? | inbx {0 predictor .
o 0| 512 | - Not Taken No * Hais vanans Yt addresees.
%e_@, 4 ®| 128 Taken es O oud 1024 share an
3]0 Not Taken . Ao M“"]
%@O ®] 1024 Taken Yes
¢ . 3|0 Not Taken Ng
. . ©| 128 Taken Yes @
Ol 1024 Taken Yes, 300
5n) | ®s12 Not Taken No 5 2l
\ —2 ., L @512 Taken No @u@
@D® 128 Taken Yes
| - . j @0 Not Taken Yes [ No ) )
” ~ G]LY Not Taken Yes | mNo
(@ . @l Taken — es {we , /}
. é )
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6. Got SLT ? (20 points): Consider the following 4-bit ALU that implements the SLT operation. Assume that
the control lines like binvert and the ALU operation selection control are all implemented, but are not shown
to make the drawing simpler.

— A0
— B0
ALU
—p1 less
—Al
—B1 1-bit  RIT
ALU set —
0—less
—A2
gy 1bit R
ALU set b—
0—lless
—A3
—B3 1-bit R3—
ALU set
0—less
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We want to make a pipelined version of this ALU — separating each stage into a different cycle. We will use
registers to latch values between pipeline stages. Your friend proposes the following pipelined version of the
ALU (where the shaded boxes are registers that latch a value after every clock cycle):

ALU OP Ctrl
Slgnal o:o.’ oooooooooooooooo:
v :
A0 HA0 : =
BO _BO I-bitR ,,,,,,,,, E s o :E;Bgama
ALU b4
—» less .
I :.» oooooooooooooo:
1l v :
.
Al S
BI | 1B ALy :
0—less s
I :’ ooooooooooooo:
R :
A2 J’-:z 1-bit R2 ; R
B2 "3 AL :
0 —lless .
I :
v ¥
A3 L% e BB
B3 -bit
r ALU set
B3 0— less -[

Assume that the input values (A0-A3, B0-B3) are all initially latched in registers, and that there are registers to
latch the final output values (labeled R0-R3). Further assume that the control signals (the ALU operation and

binvert) are also latched in registers and are correctly propagated to the 1-bit ALUs.

You suspect something is wrong with your friend’s implementation. Fix it on the next page — you may add
registers, wires, logic gates, and/or multiplexors, but you may not add any more 1-bit ALUs. If you remove
registers or wires, clearly put an X on the register or wire. Currently, the ALU supports the following operations:

add (00), sub (01), and (10), and slt (11). The number in ()’s is the ALU OP Ctrl signal for that operation.

NOTE: The ALU must still be able to perform all 4 operations correctly after your changes.
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ALU OP Cul -
Sim , .0.’ 0....0....0.....:
A0 (A0 :
. 1-bit .
B - [ ]
0 B0 ALU .
—p less .
o o g . $9 9090000008000 0 -
l : :
I :
Al Al .
! | {pr bt Rl : |
Bl ALU :
O—ICSS E’ sssecoasecooe ) ‘
| .
L ¥ 1\
A2 :i 1-bit R2T R2
B2 122 aLu :
0 —less :
| :
vy V
A3
r ALU set
B3 0 less
A/

Use this space to briefly explain what is wrong with the design and what your solution is:
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