
ECE M146 Spring 2020 Midterm Assessment
Introduction to Machine Learning Monday, May 4th 11:00 AM, 2019
Instructor: Lara Dolecek Maximum score: 100 points

You have until May 5th 11:00 AM (Pacific Time) to submit
your work directly on Gradescope.

Please read and carefully follow all the instructions.

Instructions

• You may type your exam or scan your handwritten version. Please show your work
and make sure all the work is discernible.

• Make sure to include your full name and UID in your submitted file.

• For questions related to the exam, you may deal into the following Zoom Q&A sessions:

– May 4th, 1:00pm - 1:30pm.

– May 4th, 3:00pm - 3:30pm.

– May 4th, 6:00pm - 6:30pm.

– May 4th, 9:00pm - 9:30pm.

– May 5th, 7:30am - 8:00am.

– May 5th, 9:00am - 9:30am.

Links to these Zoom Meetings are available under Week 6 on CCLE. Only clarifi-
cation questions will be answered. Please do not ask for hints. We will also have
a forum under Week 6 that reiterates all answered questions. Make sure to check the
forum before dial in.

• Important: Throughout this exam, you will find a parameter α in some of the ques-
tions. All α refers to the same parameter. This parameter α is dependent on your
UID, specifically, α = (Last digit of UID mod 8)+1. For example, a person with UID:
123456789 will use α = 2 throughout this test. Please clearly indicate what is your α
on the first page of your answers. You will lose points if the correct α is not used.

• Academic Integrity
During this exam, you are allowed to use all course material posted online, including
lectures, discussion, and homeworks, and your own textbooks. You are disallowed to
contact with a fellow student or with anyone outside the class who can offer a solution
e.g., web forum.
Please write the following statement on the first page of your answer sheet.
You will lose 20 points if we can not find this statement. The policy on academic
dishonesty can be found at the same place with this exam.

I Y ourName with UID have read and understood the policy
on academic dishonesty available on the course website.
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1. (20 pts) Perceptron (Recall: α = (Last digit of UID mod 8)+1)

(a) (4 pts) Write down the perceptron learning rule by filling in the blank below with
a proper sign (+ or -). Note that η is a small constant learning rate factor.

i. Input x is falsely classified as positive:

wt+1 = wt − ηx

ii. Input x is falsely classified as negative:

wt+1 = wt + ηx

(b) (16 pts) Consider a perceptron algorithm to learn a 3-dimensional weight vector
w = [w0, w1, w2]

T with w0 the bias term. Suppose we have training set as follow-
ing:

Sample # 1 2 3 4
x [α, α] [−α,−2α] [-8,-16] [3,1]
y +1 +1 -1 -1

Show the weights at each step of the perceptron learning algorithm. Loop through
the training set once (i.e. MaxIter = 1) with the same order presented in the above
table. Start the algorithm with initial weight w = [w0, w1, w2]

T = [0, 1, 1]T . And
we assume the learning rate η = 1.(Update when ywTx ≤ 0)
Solution:
Starting weights: w = [0, 1, 1].
Update weights based on [α, α]T : no update.
Update weights based on [−α,−2α]T : w ← w+ [1,−α,−2α] = [1, 1−α, 1− 2α].
Update weights based on [−8,−16]T : w ← w− [1,−8,−16] = [0, 9−α, 17− 2α].
Update weights based on [3, 1]T : w ← w − [1, 3, 1] = [−1, 6− α, 16− 2α].
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2. (20 points) K-NN classifier
This is a programming question. Please attach a printout of your code at the
end of your answer. You will loss points if you don’t attach you code. You
will be asked to build a k-NN classifier from first principles. You may not use fitcknn
(sklearn.neighbors.KNeighborsClassifier for python) in this problem as you will
get incorrect answer by using those built-in functions.

The data is provided in Q2data.csv. The first two columns contain the two-dimensional
features for each data point and the last column contains the label (0 or 1) for each
data point. There are 80 data points in Q2data.csv and you need to separate it into the
training data and testing data based on α. The rule is as follows: use the (10(α−1)+1)-
th to (10α)-th rows from Q2data.csv as the testing data and the rest as the training
data. For example, a person with α = 1 will use the first 10 rows as the testing data.

The k-NN classifier classifies a data point with feature xtest based on a training set by
performing the following procedures:

• Compute the distance from xtest to the feature of all training points. We will
use the L1 distance in this problem. The definition of L1 distance between two
vectors x, y ∈ RN is L1(x, y) =

∑N
i=1 |xi − yi|.

• Find the k nearest neighbors of this point.

• Classify this points as the majority class of its k nearest neighbors.

We use the following two rules to handle ties:

(a) Let dk be the distance from xtest to the k-th nearest neighbor of xtest. If there
are multiple training points that have distance dk from xtest. Choose those points
with the smallest indexes to be included in the k nearest neighbors. For example,
let k = 3, if there is x9 that is distance 1 away from xtest; x1, x3 and x4 that is
distance 2 away from xtest, then the 3 nearest neighbor of xtest are x1, x3 and x9.
Note that dk = 2 in this example.

(b) For even k, among all k nearest neighbors of a data point, if the number of points
from class 0 is the same as the number of points from class 1, classify this data
point as class 0 deterministically.

Plot the training data with red points denoting those data points with label 1 and blue
points denoting those data points with label 0. In the same plot, also plot the testing
data with color cyan. Is the data linearly separable? Find and plot (in another figure)
the testing accuracy for k = 1, 2, · · · , 9.
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Solution: The testing accuracy for each k and α are summarized in the following
table:

H
HHH

HHα
k

1 2 3 4 5 6 7 8 9

1 0.9 0.7 0.8 0.7 0.9 0.8 0.7 0.8 0.8
2 0.9 0.5 0.9 0.6 0.8 0.6 0.6 0.6 0.6
3 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.9 0.9
4 0.7 0.8 0.7 0.8 0.7 0.7 0.7 0.8 0.8
5 0.9 0.8 0.9 0.8 0.8 0.8 0.8 0.8 0.8
6 0.7 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8
7 0.8 0.8 0.7 0.8 0.7 0.7 0.7 0.7 0.7
8 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8

The first plot for α = 1 is shown below. Note that the radius of the circle represent
the number of data at this point. All other plots are omitted.
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3. (20 pts) Decision Tree
There are 8 students who have taken the course Introduction to Machine Learn-
ing in the previous quarter. At the end of the quarter, we did a survey trying to
learn how their background affects their performance in this class. Each student re-
ports whether he/she did well (binary feature 1) or not well (binary feature 0) in
ECE146(Introduction to Machine Learning) and four other classes: ECE102(System
and Signals), ECE131A(Probability and Statistics), MATH61(Introduction to Discrete
Structures) and MUSC15(Art of Listening). The results are summarized in the follow-
ing table:

Student # ECE102 ECE131 MATH61 MUSC15 ECE146

1 1 1 1 1 1
2 0 1 1 0 1
3 1 1 0 0 1
4 0 1 0 1 1
5 1 0 0 1 0
6 0 0 0 0 0
7 1 0 1 1 1
8 0 0 0 1 0

(a) (1 pt) What is the binary entropy of this data set, i.e., H(ECE146)?

Solution: Define the binary entropy function as follows:

Hb(p) = −p log(p)− (1− p) log(1− p).

H(ECE146) = Hb(
5

8
) = −(

5

8
log(

5

8
) +

3

8
log(

3

8
)) ≈ 0.9544

(b) (4 pts) Calculate the conditional entropy of

H(ECE146|X), forX ∈ {ECE102, ECE131,MATH61,MUSC15},

i.e., the conditional entropy of ECE146 conditioning on the features.
Solution:

H(ECE146|ECE102) =
1

2
Hb(

3

4
) +

1

2
Hb(

1

2
) ≈ 0.9056.

H(ECE146|ECE131) =
1

2
Hb(1) +

1

2
Hb(

3

4
) ≈ 0.4056.

H(ECE146|MATH61) =
3

8
Hb(1) +

5

8
Hb(

3

5
) ≈ 0.6068.

H(ECE146|MUSC15) =
5

8
Hb(

3

5
) +

3

8
Hb(

1

3
) ≈ 0.9512.
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(c) (4 pts) Calculate the information gain:

I(ECE146;X) = H(ECE146)−H(ECE146|X),

for
X ∈ {ECE102, ECE131,MATH61,MUSC15}.

Solution:

I(ECE146|ECE102) = 0.9544− 0.9056 = 0.0488;

I(ECE146|ECE131) = 0.9544− 0.4056 = 0.5488;

I(ECE146|MATH61) = 0.9544− 0.6068 = 0.3476;

I(ECE146|MUSC15) = 0.9544− 0.9512 = 0.0032.

(d) (1 pt) Based on the information gain, determine the first feature to split on.

Solution: We choose ECE131 which has the largest information gain.

(e) (8 pts) Make the full decision tree. Make sure to show all your work. After each
split, treat the sets of samples with X = 0 and X = 1 as two separate sets and
redo (b), (c) and (d) on each of them. X is the feature for previous split and is
thus excluded from the available features which can be split on next. Terminate
splitting if after the previous split, the entropy of ECE146 in the current set is 0.

Solution: Below show the decision tree if we choose ECE131 as the first splitting
feature.

After the first split, H(ECE146|ECE146 = 1) = 0 so the tree stops growing
on that branch. We are left with the samples that have ECE131 = 0 which is
summarized in the following table.
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Sample # ECE102 MATH61 MUSC15 ECE146

5 1 0 1 0
6 0 0 0 0
7 1 1 1 1
8 0 0 1 0

By observation, Feature MATH61 has the highest information gain. Then the
next split should be MATH61. After this split, every leaf is pure, i.e., ECE146
is either 0 or 1. Therefore, we stop growing the tree.

(f) (2 pts) Now, determine if students 9 and 10 are good at ECE146 or not based
on the decision tree you made.

Student # ECE102 ECE131 MATH61 MUSC15 ECE146

9 1 0 1 0 ?
10 1 0 0 0 ?

Solution:

Student 9: Good

Student 10: Not good
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4. (20 points)Linear Regression (Recall: α = (Last digit of UID mod 8)+1)
Please show intermediate steps for this question, the problem is designed to be done
by hand calculation.
You are given the following three data points:[

x1
y1

]
=

[
0
6

]
,

[
x2
y2

]
=

[
α
0

]
,

[
x3
y3

]
=

[
α + 1

0

]
.

You want to fit a line, i.e., ŷ = w1x + w0, that minimize the following sum of square
error:

J(w) =
3∑
i=1

(w1xi + w0 − yi)2.

In matrix-vector form, the objective function is

J(w) = ‖Xw − y‖2,

for some X, y and w = [w0, w1]
T . What are X and y (3 pts)? What is the optimal

w that minimize the objective function (13 pts)? Draw the three data points and the
fitted line (4 pts).
Solution:

X =

1 0
1 α
1 α + 1

 , y =

6
0
0

 .

w = (XTX)−1XTy =

[
3 2α + 1

2α + 1 2α2 + 2α + 1

]−1
×
[
6
0

]
=

1

2α2 + 2α + 2

[
2α2 + 2α + 1 −2α− 1
−2α− 1 3

]
×
[
6
0

]
=

[
6α2+6α+3
α2+α+1
−6α−3
α2+α+1

]
.

Numerical result is shown in the table below.

α 1 2 3 4 5 6 7 8
w0 5 5.57 5.77 5.86 5.9 5.93 5.95 5.96
w1 -3 -2.14 -1.62 -1.29 -1.06 -0.91 -0.79 -0.70

The plot for α = 1 is shown below. Other plots are tilted version of this and are
omitted.
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5. (20 pts) Support Vector Machine (Recall: α = (Last digit of UID mod 8)+1)
You are given the following data set which is comprised of x(i) ∈ R2 and y(i) ∈ {−1, 1}.

i x
(i)
1 x

(i)
2 yi

1 -4 12 1
2 0 α 1
3 10-α 0 -1
4 13 -1 -1

(a) (4 pts) Plot the data. Is the data linearly separable?
Solution: Yes, data is linearly separable. Plot for α = 1 is shown below. Plots
for other α’s are tilted version of this and are omitted.

(b) (5 pts) Suppose you are asked to find the maximum margin separating hyper-
plane of the form [w1, w2][x1, x2]

T + b = 0. Write down the (primal) optimization
problem explicitly using only w1, w2 and b.
Solution:
The optimization problem is as follows:

min
w1,w2,b

w2
1 + w2

2

s.t. − 4w1 + 12w2 + b ≥ 1,

αw2 + b ≥ 1,

− (10− α)w1 − b ≥ 1,

− 13w1 + w2 − b ≥ 1.
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(c) (6 pts) Look at the data and circle the support vectors by inspection. Find and
plot the maximum margin separating hyperplane.
Solution:
The two support vectors are [0, α]T and [10−α, 0]T . The line that has normal vec-

tor [α−10, α] and also pass through the midpoint of support vectors (
[
10−α

2
, α
2

]T
)

is (α− 10)x1 + αx2 − 10α + 50 = 0.

(d) (5 pts) Solve the dual problem for the Lagrange multipliers αis and use your dual
solution to find the w and b of the primal problem.
Solution:
Since we only have two support vectors, only the Lagrange multiplier correspond-
ing to the support vectors are non-zero. Let α2 denote the Lagrange multiplier
for x(2) and similarly α3 for x(3). From the condition

∑4
i=1 αiyi = 0, we get

α2 = α3 = α0. Write down the objective of the dual problem of SVM

W (α) =
4∑
i=1

αi −
1

2

4∑
i,j=1

yiyjaiajx
(i)Tx(j)

= 2α0 −
1

2
α2
0x

(2)Tx(2) + α2
0x

(2)Tx(3) − 1

2
α2
0x

(3)Tx(3)

= 2α0 −
α2
0

2
(2α2 − 20α + 100).

Maximizing W (α) over α0, we get α3 = α2 = α0 = 1
α2−10α+50

. Using w =∑
m∈S αmy

(m)x(m), we get w = 1
α2−10α+50

[α− 10, α]T . To find b, recall that

y(i)
(
wTx(i) + b

)
= 1

for any support vectors x(i). Use any support vector, we can get b = 50−10α
α2−10α+50

.

The w and b we find by solving the dual problem is a scaled version of [w1, w2]
T

and w0 in part (c). These solutions therefore give the same separating hyperplane.
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