ECE M146 Machine Learning Instructor: Lara Dolecek

Spring 2019 Midterm Monday, May 6th, 2019 Maximum score: 100 points

Maximum score is 100 points. You have 110 minutes to complete the quiz. Please show your work.

Instructions

- You may find the following useful.
 - $-H_b(\frac{3}{8}) = 0.95, H_b(\frac{1}{3}) = 0.92, H_b(\frac{1}{4}) = 0.81, H_b(\frac{1}{5}) = 0.72,$
 - The inverse of a 2×2 matrix is given by:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

- The quotient rule:

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}.$$

Your Name:

Your ID Number:

Name of person on your left:

Name of person on your right:

Score	Possible
20	20
16	16
12	16
16	16
16	16
14	16
94	100
	20 16 12

1. (20 pts) True or False.

Circling the correct answer is worth +4, circling the incorrect answer is worth -2 points. Not circling either is worth 0 points.

(a) The perceptron algorithm does not converge if the training samples are not linearly separable.

(b) k-nearest neighbors classification algorithm will always give a linear decision boundary.

(c) The derivative of the sigmoid function $\sigma(x) = \frac{1}{1+\exp(-x)} = \frac{\exp(x)}{1+\exp(x)}$ satisfies: $\sigma'(x) = \sigma(x)(1-\sigma(x)).$ TRUE FALSE $\sigma' = \frac{\exp(-x)}{(1+\exp(-x))^2} = \frac{1}{1+\exp(-x)} \frac{\exp(-x)}{1+\exp(-x)}$

(d) Suppose the data is linearly separable. The hyperplane defined by $w_1^T x + b_1 = 0$ we get by solving the following optimization problem

$$\min_{w_1,b_1} \quad \frac{1}{2} \|w_1\|^2 s.t. \quad y^{(i)}(w_1^T x^{(i)} + b_1) \ge 1, \quad i = 1, \cdots, m,$$

is the same as the hyperplane defined by $w_2^T x + b_2 = 0$ we get by solving the following optimization problem

$$\begin{array}{ccc} \min_{w_2,b_2} & \frac{1}{2} \|w_2\|^2 \\ s.t. & y^{(i)}(w_2^T x^{(i)} + b_2) \ge 2, \quad i = 1, \cdots, m. \end{array}$$
TRUE FALSE

(e) For $x_1, x_2 \in \mathbb{R}$, $K(x_1, x_2) = (1 + x_1 x_2)^2$ is a valid kernel. (TRUE) FALSE

$$(1 + x_1 x_2)^2 = 1 + 2 x_1 x_2 + x_1^2 x_2^2$$

$$\phi(x) = (1, \sqrt{2}x, x^2)$$

2. (16 pts) Perceptron

- (a) Write down the perceptron learning rule by filling in the blank below with a proper sign (+ or -). Note that η is a small positive constant (known as learning rate).
 - i. Input \boldsymbol{x} is falsely classified as negative:

$$w^{t+1} = w^t + \eta x$$
 yi is positive

 $\omega^{++1} = \omega^+ + YiXi$

ii. Input \boldsymbol{x} is falsely classified as positive:

$$w^{t+1} = w^t - \eta x$$
 Yi is negative

(b) Consider a perceptron algorithm to learn a 3-dimensional weight vector $\boldsymbol{w} = [w_0, w_1, w_2]$ with w_0 being the bias term. Suppose we have the training set as follows:

Sample #	1	2	3	4
\boldsymbol{x}	[10, 10]	[0,0]	[3,3]	[4,8]
y	+1	-1	-1	1

Show the weights at each step of the perceptron learning algorithm. Loop through the training set once (i.e. MaxIter = 1) with the same order presented in the above table. Start the algorithm with the initial weight $\boldsymbol{w} = [w_0, w_1, w_2] = [0, 1, 1]$. We assume the learning rate $\eta = 1$. (Update when $y \boldsymbol{w}^T \boldsymbol{x} \leq 0$)

1:
$$y_{1} w^{T} x_{1} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = 20 > 0 \rightarrow \text{ correctly classified}$$

2: $y_{2} w^{T} x_{2} = -\begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = 0 \le 0 \rightarrow \text{ incorrectly classified}$
 $w^{t+1} = w^{t} + y_{2} x_{2} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$
3: $y_{3} w^{T} x_{3} = -\begin{bmatrix} -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = -5 \le 0 \rightarrow \text{ incorrectly classified}$
 $w^{t+1} = w^{t} + y_{2} x_{3} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = -5 \le 0 \rightarrow \text{ incorrectly classified}$
4: $y_{n} w^{T} x_{n} = \begin{bmatrix} -2 & -2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} = -2 (13) = -26 \le 0 \rightarrow \text{ incorrectly classified}$
 $w^{t+1} = w^{t} + y_{n} x_{n} = \begin{bmatrix} -2 & -2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix}$

3. (16 pts) k-Nearest Neighbors

6

In the following questions, you will consider a k-nearest neighbor classifier using Euclidean distance metric on a binary classification task. We assign the class of the test point to be the class of the majority of the k nearest neighbors. To avoid ties, only consider odd k. Consider the following dataset:

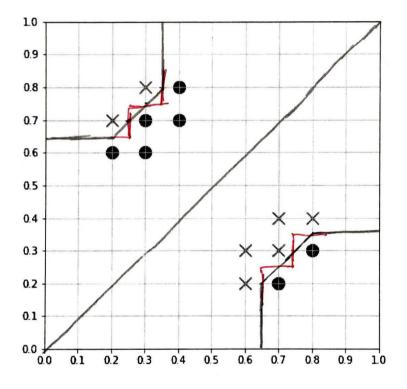


Figure 1: k-Nearest Neighbors

(a) In above figure, sketch the 1-nearest neighbor decision boundary for this dataset.

(b) What value of k maximizes leave-one-out cross-validation error for this dataset?

What is the resulting error? k= 3: |||| = 4 maximtze CV error k=9 and k=14 both k= 5:11 = 4 have error=14 both k=7:111=4 h=9:14 h= 11: 10 h= 13: 14

4. (16 pts) Linear Regression

You are given the following three data points:

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \end{bmatrix}, \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} x_3 \\ y_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

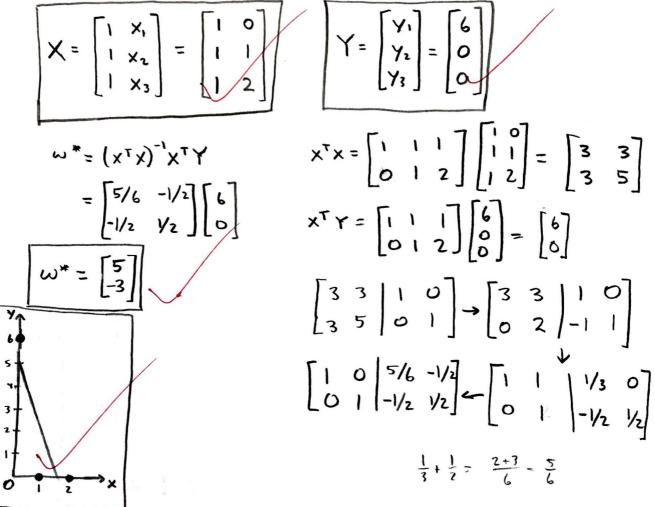
You want to fit a line, i.e., $\hat{y} = w_1 x + w_0$, that minimizes the following sum of squared errors:

$$J(\boldsymbol{w}) = \sum_{i=1}^{3} (w_1 x_i + w_0 - y_i)^2.$$

In matrix-vector form, the objective function is

$$J(\boldsymbol{w}) = \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|^2,$$

for some X, y and $w = [w_0, w_1]^T$. What are X and y? What is the optimal w that minimizes the objective function? Draw the three data points and the fitted line.



5. (16 pts) Decision Tree

There are 8 students who have taken the course Introduction to Machine Learning in the previous quarter. At the end of the quarter, we did a survey trying to learn how their background affects their performance in this class. Each student reports whether he/she did well (binary feature 1) or not well (binary feature 0) in ECE146(Introduction to Machine Learning) and three other classes they had taken previously: ECE102(Systems and Signals), ECE131A (Probability and Statistics) and MUSC15(Art of Listening). The results are summarized in the following table:

Student $\#$	ECE102	ECE131	MUSC15	ECE146
1	1	0	1	1
2	0	0	0	0
3	1	1	1	1
4	0	1	0	ľ
5	0	0	1	0
6	1	0	1	0
7	1	1	0	1
8	1	1	0	`1

Calculate the information gain:

$$I(\text{ECE146}; X) = H(\text{ECE146}) - H(\text{ECE146}|X),$$

for

$X \in \{\text{ECE102, ECE131, MUSC15}\}.$

Which class among ECE102, ECE131 and MUSC15 would you ask about if you want to infer how he/she did in ECE146?

$$H(146) = H_{1}(\frac{5}{8}) = H_{1}(\frac{3}{8}) = 0.95$$

$$H(146|102=0) = H_{1}(\frac{1}{3}) = 0.92$$

$$H(146|102=0) = H_{1}(\frac{1}{3}) = 0.92$$

$$H(146|102=1) = H_{1}(\frac{1}{3}) = 0.92$$

$$H(146|102=1) = 0.345 + 0.45 = 0.795$$

$$H(146|131=0) = H_{1}(\frac{1}{4}) = 0.81$$

$$H(146|131=1) = H_{1}(\frac{4}{4}) = 0$$

$$H(146|131=0) = H_{1}(\frac{1}{4}) = 0.81$$

$$H(146|131=0) = \frac{1}{2}(0.81) = 0.405$$

$$H(146|15) = P(15=0) H(146|15=0) = \frac{1}{2}(0.81) = 0.405$$

$$H(146|15) = P(15=0) H(146|15=0) = \frac{1}{2}(0.81) = 0.405$$

$$H(146|15) = P(15=0) H(146|15=0) + P(15=1) H(146|15=1) = \frac{1}{2}(0.81) + \frac{1}{2}(1) = 0.405 + 0.5 = 0.905$$

CONTINUED ON NEXT PAGE

This page is intentionally left blank for the students to use.

$$I(146; 102) = H(146) - H(146|102)$$

$$= 0.95 - 0.795$$

$$I(146; 102) = 0.155$$

$$I(146; 131) = H(146) - H(146|131)$$

$$= 0.95 - 0.405$$

$$O.55 - 0.005$$

$$I(146; 131) = 0.545$$

$$I(146; 131) = 0.545$$

$$I(146; 15) = H(146) - H(146|15)$$

$$= 0.95 - 0.905$$

$$I(146; 15) = 0.045$$
Since $I(146; 131)$ is the greatest of the three, I would first ask about ECE131 to infer how they did in ECE146.

6. (16 pts) Support Vector Machine

You are given the following data set which is comprised of $x^{(i)} \in \mathbb{R}^2$ and $y^{(i)} \in \{-1, 1\}$.

i	$x_1^{(i)}$	$x_2^{(i)}$	$y^{(i)}$
1	1	4	1
2	0	3	1
3	1	1	-1
4	3	0	-1

- (a) Plot the data. Is the data linearly separable?
- (b) Suppose you are asked to find the maximum margin separating hyperplane defined by $[w_1, w_2][x_1, x_2]^T + b = 0$. Write down the (primal) optimization problem **explicitly** using only w_1, w_2 and b, i.e., plugging in $\boldsymbol{x}^{(i)}$ and $y^{(i)}$.
- (c) Look at the data and circle the support vectors by inspection. Find and plot the maximum margin separating hyperplane.
- (d) Solve the dual problem for the Lagrange multipliers α_i s and use your dual solution to find the w and b of the primal problem.

$$\begin{array}{l} \textbf{Q}, \qquad \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \textbf{w}_{1}^{*} \textbf{w}_{1}^{*} \textbf{w}_{1}^{*} \textbf{w}_{1}^{*} \textbf{w}_{1}^{*} \textbf{w}_{1}^{*} \textbf{w}_{1}^{*} \textbf{w}_{2}^{*} \textbf{w}_{2}^$$