
Machine Learning M146 UCLA Spring quarter 2017-2018
Prof. Suhas Diggavi Handout # 15, Wednesday, 5th May 2018

Midterm Practice Problems Solutions

Problem 1 (Decision Tree)

(a) H(Z) = H(25) = 2
5 log(52) + 3

5 log(53) = 0.970951

H(Z|split(W )) =
1

5
H(Z|branch(W = 1)) +

4

5
H(Z|branch(W = 0))

=
1

5
H(1) +

4

5
H(

1

4
) = 0.649

H(Z|split(X)) =
2

5
H(Z|branch(X = 1)) +

3

5
H(Z|branch(X = 0))

=
2

5
H(0.5) +

3

5
H(

1

3
) = 0.951

H(Z|split(Y )) =
2

5
H(Z|branch(Y = 1)) +

3

5
H(Z|branch(Y = 0))

=
2

5
H(0.5) +

3

5
H(

1

3
) = 0.951

Therefore splitting with W has the highest information gain of 0.321951 in comparison to
splitting with X or Y both having IG of 0.0199

(b)

X and Y can be swapped to get another possible decision tree.
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(c) Samples# 5 and 7 have the same features but different labels, therefore it is not possible to
construct such a decision tree.

Problem 2 (Perceptron)

(a) AND

θ = (2, 2,−3) if the augmented features are (x1, x2, 1). Multiple solutions are possible.

(b) XOR

No solution exists because the data is not linearly separable.

Problem 3 (Logistic Regression)

(a) For finding ∇wJ(w,x) first note that αi(x) doesn’t depend on w. Therefore the deriva-
tion will be similar to that for logistic regression except for the additional localized weights.
∇wJ(w,x) =

∑n
i=1 αi(x)(hw(xi)− yi)xi.

Let X = (x1, . . . ,xn)T , then we can write ∇wJ(w,x) = XT z, where z is a vector of Rn
with each entree αi(x)(hw(xi)− yi).

(b) From the expression for the gradient you can see that

∂J(w,x)

∂wj
=

n∑
i=1

αi(x)(hw(xi)− yi)xi,j

∂2J(w,x)

∂wk∂wj
=

∂

∂wk

( n∑
i=1

αi(x)(hw(xi)− yi)xi,j
)

=
n∑
i=1

αi(x)
∂

∂wk
hw(xi)xi,j

=
n∑
i=1

αi(x)hw(xi)(1− hw(xi))xi,jxi,k

Therefore we have

∇2
wJ(w,x) =

n∑
i=1

αi(x)hw(xi)(1− hw(xi))xix
T
i = XTDX

uTXTDXu = ||D
1
2Xu||22 > 0 ∀u 6= 0

(c)
wt+1 ← wt − ηXT zt

(d) Non parametric method.
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Problem 4 (Linear Regression)

(a)

(b) Gradient Descent:

wt+1
1 ← wt1 + η

M∑
i=1

(yi − (wt1x
(i)
1 + wt2x

(i)
2 ))x

(i)
1 (1)

wt+1
2 ← wt2 + η

M∑
i=1

(yi − (wt1x
(i)
1 + wt2x

(i)
2 ))x

(i)
2 (2)

You can also do stochastic gradient descent.

(c) To prove Eq. (??) has a global optimum, we have to show the function is convex. To prove
the function is convex, we need to demonstrate the Hessian matrix (or the second derivatives)
is positive semi-definite.

The Hessian of Eq. (??) is

H =

[∑
(x

(i)
1 )2

∑
x
(i)
1 x

(i)
2∑

x
(i)
1 x

(i)
2

∑
(x

(i)
2 )2

]
(3)

To show H is positive semi-definite, we have to prove for every vector z 6= 0, zTHz ≥ 0. This
can be done by the following equations:

zTHz =
∑

(x
(i)
1 )2z21 + 2

∑
x
(i)
1 x

(i)
2 z1z2z1z2 +

∑
(x

(i)
1 )2z22

=
∑

(z1x
(i)
1 + z2x

(i)
2 )2

≥ 0

(4)

Problem 5 (Maximum Likelihood Estimation)

(a)

L(x1, x2, . . . , xn;λ) =

n∏
i=1

f(xi|λ)

= λn(x1x2 . . . xn)−λ−1
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(b)

argmax
λ
L(x1, x2, . . . , xn;λ) = argmin

λ

(
− lnL(x1, x2, . . . , xn;λ)

)
−LL = −n lnλ+ (λ+ 1)

n∑
i=1

lnxi

d(−LL)

dλ
= −n

λ
+

n∑
i=1

lnxi = 0

λmle =
n∑n

i=1 lnxi

But since λ > 1 is known about the model, λmle = max(1, n∑n
i=1 lnxi

)

(c) λmle = max(1, 46) = 1

Problem 6 (Maximum Likelihood Estimation 2)

(a)

l(θ) =
∑
n

logP (Xi; θ)

=
∑
n

xn log(θ) + (1− xn) log(1− θ)

= 3 log(θ) + log(1− θ)

(b)

l
′
(θ) =

3

θ
− 1

1− θ

(c)

l
′
(θ) =

3

θ
− 1

1− θ
= 0

θ̂ =
3

4

Problem 7 (Kernel)

To show that Kβ is a kernel, simply use the same feature mapping as used by the polynomial kernel
of degree 3, but first scale x by

√
β. So, in effect they are both polynomial kernels of degree 3. If

you look at the resulting feature vector, the offset term 1 is unchanged, the linear terms are scaled
by
√
β, the quadratic terms are scaled by β, and the cubic terms are scaled by β1.5. Although the
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model class remains unchanged, this changes how we penalize the features during learning (from
the ||θ||2 in the objective). In particular, higher-order features will become more costly to use, so
this will bias more towards a lower-order polynomial.

That is,

Kβ(x, z) = (1 + βx · z)3

= (1 + β (x1z1 + x2z2))
3

= 1 + 3β (x1z1 + x2z2) + 3β2
(
x21z

2
1 + 2x1z1x2z2 + x22z

2
2

)
+ β3

(
x31z

3
1 + 3x21z

2
1x2z2 + 3x1z1x

2
2z

2
2 + x32z

3
2

)
so that

φβ(x) = (1,
√

3βx1,
√

3βx2,
√

3βx21,
√

6βx1x2,
√

3βx22,
√
β3x31,

√
3β3x21x2,

√
3β3x1x

2
2,
√
β3x32)

T

The mth-order terms in φβ(·) are scaled by βm/2, so β trades off the influence of the higher-order
versus lower-order terms in the polynomial. If β = 1, then β1/2 = β = β3/2 so that Kβ = K. If
0 < β < 1, then β1/2 > β > β3/2 so that lower-order terms have more weight and higher-order
terms less weight; as β → 0, Kβ approaches 1 + 3βx · z (a linear separator). If β > 1, the trade-off
is reversed; as β →∞, only the constant and cubic terms in Kβ remain.
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