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Midterm Practice Problems Solutions

Problem 1 (DrcisioNn TREE)

(a) H(Z) = H(2) = 2log(3) + 2log(2) = 0.970951

H(Z|split(W)) = %H(Z\brcmch(W =1))+ %H(Z|branch(W =0))
_ %H(l) 4 gH(%) — 0.649

H(Z|split(X)) = %H(Z\bmnch(X =1))+ gH(Z]bmnch(X =0))

2 3. .1
CH(0.5) + SH(3) =095
2 3
H(Z|split(Y)) = gH(Z\branch(Y =1))+ gH(Z|bmnch(Y =0))
2 3. .1
= —H(O0. —-H(-)=0.951
H(0.5) + SH(3) =095

Therefore splitting with W has the highest information gain of 0.321951 in comparison to
splitting with X or Y both having IG of 0.0199

(b)

X and Y can be swapped to get another possible decision tree.



(c) Samples# 5 and 7 have the same features but different labels, therefore it is not possible to
construct such a decision tree.

Problem 2 (PercepTRON)

(a) AND
0 = (2,2, —3) if the augmented features are (x1,x2,1). Multiple solutions are possible.
(b) XOR

No solution exists because the data is not linearly separable.

Problem 3 (Locistic REGRESSION)

(a) For finding V,,J(w,x) first note that «;(x) doesn’t depend on w. Therefore the deriva-
tion will be similar to that for logistic regression except for the additional localized weights.

Vi (w,z) =370 ap(®)(he (@) — yi) 2
Let X = (x1,...,2,)7, then we can write V,,J(w,x) = XTz, where z is a vector of R"
with each entree a; () (hy(x;) — ;).

(b) From the expression for the gradient you can see that

0J(w, x)
Zaz yl)xz,j

3w]

Therefore we have

V2 J(w,x) = Zai(x)hw(azi)(l — he(z))zizl = XTDX
i=1

uTXTDXu=|DzXu|2>0 Yu#0
()

wt — w' — nXth

(d) Non parametric method.



Problem 4 (Linear REGRESSION)

(a)
(b)

Gradient Descent:

wit' w1+n2 — (wia}” + whel))a ] (1)
wé“ —  wy —H]Z wlxl +w2x§)))x§i) (2)

You can also do stochastic gradient descent.

To prove Eq. (?7?) has a global optimum, we have to show the function is convex. To prove
the function is convex, we need to demonstrate the Hessian matrix (or the second derivatives)
is positive semi-definite.

The Hessian of Eq. (?7) is

L2 5 0 0)
SRR ®

To show H is positive semi-definite, we have to prove for every vector z # 0, 27 Hz > 0. This
can be done by the following equations:

2THz = Z(azgi))?zf +2 Z xgi)mg)Zl@ZlZz + Z(l‘g ))222
— S (el) + 22§ @

>0

Problem 5 (Maxmmum LIKELIHOOD ESTIMATION)

(a)

L(x1,22,...,2n;\) = Hf(xz|)\)
1=1

= )\"(wle e xn)_)‘_l



arg m)z\a,xﬁ(azl,azg, cey Ty ) = arg m/\in ( —InL(x1,29,...,2n; A))

—LL=-nlnA+A+1)) Inz
=1

d(—LL) n - B
= )\—i-;lnmz—o

dA
n

Amle = =———
T Y Ingy
n

But since A > 1 is known about the model, \;;e = max(1, W)
i=1 7

(¢) Amie = max(1, %) =1

Problem 6 (Maxmmum LIKELIHOOD ESTIMATION 2)
(a)
1) = > log P(X;;0)

= an log(0) + (1 — z,,) log(1 — 0)

= 3log(d) + log(1l —0)

/ 3 1
A
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Problem 7 (Kerner)

To show that Kz is a kernel, simply use the same feature mapping as used by the polynomial kernel
of degree 3, but first scale x by v/B. So, in effect they are both polynomial kernels of degree 3. If
you look at the resulting feature vector, the offset term 1 is unchanged, the linear terms are scaled
by /B, the quadratic terms are scaled by 3, and the cubic terms are scaled by 4. Although the



model class remains unchanged, this changes how we penalize the features during learning (from
the ||0||? in the objective). In particular, higher-order features will become more costly to use, so
this will bias more towards a lower-order polynomial.

That is,
Kg(x,z) = (1+ px- z)®
= (1 + B (1‘121 + 117222))3
= 1438 (z121 + 2222) + 367 (2327 + 231212220 + 7323)
+ 8% (2123 + 3a%2iwazs + 3v1212525 + 1523)
so that

¢g(X) = (17 \/?E.Tl, \/@x% \/gﬁ.f%, \/6/81‘1:1727 \/gﬂ.f%, \/@le))a V 3/83'%%‘7:27 V 3/83:171:17%7 \/ﬁ‘rg)T

The mt-order terms in ¢3(+) are scaled by B™/2 5o 8 trades off the influence of the higher-order
versus lower-order terms in the polynomial. If 8 = 1, then /2 = 3 = $%/2 so that Kg =K. If
0 < B <1, then 82 > B > 83/2 so that lower-order terms have more weight and higher-order
terms less weight; as 3 — 0, Kg approaches 1+ 35x -z (a linear separator). If 3 > 1, the trade-off
is reversed; as 8 — oo, only the constant and cubic terms in K remain.



