MIDTERM PRACTICE PROBLEMS

Friday, 4th May 2018

1 Decision Tree

The training set is given below. W, X, Y are the attributes $\in \{0, 1\}$ and $Z \in \{-1, +1\}$ is the class variable.

#	W	Х	Y	Z
1	0	0	0	-1
2	0	0	1	-1
3	1	0	0	+1
4	0	1	0	-1
5	0	1	1	+1

- (a) Which attribute has the highest information gain? Justify your answer with calculations.
- (b) Draw the complete decision tree for this dataset using ID3 with information gain criterion.
- (c) Given the validation set

#	W	Х	Y	Ζ
6	1	1	0	+1
7	0	1	1	-1
8	1	1	1	-1

Can you construct a decision tree with 100% accuracy on validation set as well as training set. If yes then draw such a decision tree, and if no then explain why it is not possible.

2 Perceptron

Design (specify θ for) a two-dimensional input perceptron (with an additional bias or offset term) that computes the following boolean functions. Assume T = 1 and F = -1. If no perceptron exists, state why.

[AND]	x_1	x_2	y	[XOR]	x_1	x_2	y
	-1	-1	-1		-1	-1	-1
	-1	+1	-1		-1	$+1 \\ -1 \\ +1$	+1
	+1	-1	-1		+1	-1	+1
	+1	+1	+1		+1	+1	-1

3 Logistic Regression

Given data $\mathcal{D}: \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ and the query point x we would like to choose w that minimizes the loss which is the negative log likelihood weighted appropriately.

$$J(\boldsymbol{w}, \boldsymbol{x}) = -\sum_{i=1}^{n} \alpha_i(\boldsymbol{x}) [y_i \log h_{\boldsymbol{w}}(\boldsymbol{x}_i) + (1 - y_i) \log(1 - h_{\boldsymbol{w}}(\boldsymbol{x}_i))]$$

where

$$h_{\boldsymbol{w}}(\boldsymbol{x}_i) = rac{1}{1 + \exp(-\boldsymbol{w}^T \boldsymbol{x}_i)} \qquad lpha_i(\boldsymbol{x}) = \exp\left(-rac{||\boldsymbol{x} - \boldsymbol{x}_i||^2}{2\sigma}
ight)$$

 $\sigma > 0$ is a hyperparameter. Whenever we receive a new query point we must train the model with the new weights $\alpha_i(\boldsymbol{x})$.

From class you know that $\nabla_w J(\boldsymbol{w}) = \sum_{i=1}^n (h_{\boldsymbol{w}}(\mathbf{x}_i) - y_i) \boldsymbol{x}_i$ where $J(\boldsymbol{w})$ is the negative log likelihood for logistic regression.

- (a) Given a test point \boldsymbol{x} , find the gradient of $J(\boldsymbol{w}, \boldsymbol{x})$ with respect to \boldsymbol{w} .
- (b) Given a test point \boldsymbol{x} , find the Hessian of $J(\boldsymbol{w}, \boldsymbol{x})$ with respect to \boldsymbol{w} and show that it is positive semi-definite.
- (c) Given a test point \boldsymbol{x} , write the gradient descent update rule.
- (d) Is this locally weighted regression a parametric or non parametric method?

4 Linear Regression

- (a) Describe one application of linear regression. Please define clearly what are your input, output, and features.
- (b) Given a dataset $\{(x^{(i)}, y^{(i)})\}_{i=1}^{M}$ in a two dimensional space. The objective function of linear regression with square loss is

$$J(w_1, w_2) = \frac{1}{2} \sum_{i=1}^{M} (y_i - (w_1 x_1^{(i)} + w_2 x_2^{(i)}))^2,$$
(1)

where w_1 and w_2 are feature weight to be learned. Write down one optimization procedure that can learn w_1 and w_2 from data. Please be as explicit as possible.

(c) Prove that Eq. (1) has a global optimal solution.

5 Maximum Likelihood Estimation

Let $\mathcal{D}: \{x_1, x_2, \dots, x_n\}$ i.i.d and be drawn from the distribution

$$f(x|\lambda) = \lambda x^{-\lambda-1}$$
 where $\lambda > 1, x \ge 1$

- (a) Write the likelihood function of λ .
- (b) Find the maximum likelihood estimator of λ .
- (c) Given that $\mathcal{D}: \{1, e, e^2, e^3\}$, compute the maximum likelihood estimate of λ using the previously found estimator. [Hint: Are you looking closely?]

6 Maximum Likelihood Estimation 2

We observe the following data consisting of four independent random variables $X_n, n \in \{1, \ldots, 4\}$ drawn from the same Bernoulli distribution with parameter θ (*i.e.*, $P(X_n = 1) = \theta$): $(X_1, X_2, X_3, X_4) = (1, 1, 0, 1)$.

- (a) Give an expression for the log likelihood $l(\theta)$ as a function of θ given this specific dataset.
- (b) Give an expression for the derivative of the log likelihood for this specific dataset.
- (c) What is the maximum likelihood estimate $\hat{\theta}$ of θ ?

7 Kernel

Given vectors \mathbf{x} and \mathbf{z} in \mathbb{R}^2 , define the kernel $K_{\beta}(\mathbf{x}, \mathbf{z}) = (1 + \beta \mathbf{x} \cdot \mathbf{z})^3$ for any value $\beta > 0$. Find the corresponding feature map $\phi_{\beta}(\cdot)$. What are the similarities/differences from the kernel $K(\mathbf{x}, \mathbf{z}) = (1 + \mathbf{x} \cdot \mathbf{z})^3$, and what role does the parameter β play?