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Problem 1 (Hidden Markov Models)

Consider the following Hidden Markov Model.

Suppose that O1 = A and O2 = B is observed.

(a) What is the probability of P (O1 = A,O2 = B,X1 = 0, X2 = 1)?

(b) What is the most likely assignment for X1 and X2?

(c) True/False Based on the independent assumptions in HMM, the random variable O1 is
independent of the random variable X2. Justify your answer.

Problem 2 (EM algorithm and Gaussian Mixture Model)

Consider a two-component Gaussian mixture model for univariate data (i.e. x ∈ R), in which the
probability density for an observation, x, is

1

2
N (x|µ, 1) +

1

2
N (x|µ, 22)

Here, N (x|µ, σ2) denotes the density for x under a univariate normal distribution with mean µ
and variance σ2. Notice that mixing proportions are equal for this mixture model, that the two
components have the same mean, and that the standard deviations of the two components are fixed
at 1 and 2. There is only one model parameter, µ.

Suppose we wish to estimate the µ parameter by maximum likelihood using the EM algorithm.
Answer the following questions regarding how the E step and M step of this algorithm operate, if
we have the three data points below:

4.0, 4.6, 2.0
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Here is a table of standard normal probability densities that you may find useful:

(a) Find the posterior probabilities that will be computed in the E step if the model parameter
estimates from the previous M step are µ = 4,σ1 = 1 and σ2 = 2. Since the probabilities
for the two components must add to one, it is enough to give ri1 = P (component 1|xi) for
i = 1, 2, 3. You can leave your answer in terms of a fraction.
Hint : Note that the normal density function with mean µ and variance σ2 is

N (x|µ, σ2) = (1/σ)N
(
x− µ
σ

∣∣∣∣ 0, 1)
(b) Using the probabilities that you computed in part (a), find the estimate for µ that will be

found in the next M step. Recall that the M step maximizes the expected value of the log
of the probability density for x1, x2, x3 and the unknown component indicators, with the
expectation taken with respect to the distribution for the component indicators found in the
previous E step.

Problem 3 (PCA)

Take four data points x1 = (−1, 1), x2 = (2, 2), x3 = (−2,−2) and x4 = (1,−1) in R2 euclidean
space.

(a) Find the first principal component vector.

(b) Project the data points onto the subspace of the principal component chosen above. Find the
new coordinates in the subspace spanned by the principal component and the variance of the
projected data.

(c) Find the representation of the projections obtained in the original 2-d space and compute
the reconstruction error. Note: Mean reconstruction error is the average squared distance of
original points from their estimates.

(d) Remove x2 and x3 from the data set and suppose that the steps undertaken in (a), (b) and
(c) are repeated on the remaining points. What is the reconstruction error now?

Hint: You need not necessarily solve an SVD or eigen decomposition for solving this question.

Problem 4 (Kernels and SVM)

(a) Properties of Kernels

i. Given n training examples {xi}ni=1, the kernel matrix A is an n × n square matrix,
where A(i, j) = K(xi, xj) = Φ(xi)

TΦ(xj). Prove that the kernel matrix is symmetric
(i.e, Ai,j = Aj,i).
hints: Your proof will not be longer than 2 or 3 lines.
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ii. Prove that the kernel matrix A is positive semi-definite.
hints: (1) Remember that an n × n matrix A is positive semi-definite if and only if
for any n dimensional vector v 6= 0, we have vTAv ≥ 0. (2) Consider a matrix B =
[Φ(x1), · · · ,Φ(xn)] and use it to prove A is positive semi-definite.

(b) Given a dataset D = {xi, yi}, xi ∈ Rk, yi = {−1,+1}, 1 ≤ i ≤ N .

A hard SVM solves the following formulation

min
w,b

1

2
wTw s.t ∀i, yi(wTxi + b) ≥ 1, (1)

and soft SVM solves

min
w,ξi,b

1

2
wTw + C

∑
i

ξi s.t ∀i, yi(wTxi + b) ≥ 1− ξi, ∀i, ξi ≥ 0 (2)

i. Complete:
If C = , soft SVM will behave exactly as hard SVM.
In order to reduce over-fitting, one should (decrease or increase)
the value of C.

ii. Show that when C = 0, the soft SVM returns a trivial solution and cannot be a good
classification model.

iii. True/False The slack variable ξi in soft SVM for a data point xi always takes the value
0 if the data point is correctly classified by the hyper-plane. Explain your answer.

iv. True/False The optimal weight vector w can be calculated as a linear combination of
the training data points. Explain your answer. [You do not to prove this.]

v. We are given the dataset in Figure 1 below, where the positive examples are represented
as black circles and negative points as white squares. (The same data is also provided
in Table 1 for your convenience). Recall that the equation of the separating hyperplane
is ŷ = wTx + b.

i. Write down the parameters for the learned linear decision function.

W = (w1, w2) = . b =

ii. Circle all support vectors in Figure 1.

Problem 5 (Kernelized logistic regression)

In this problem, we explore how logistic regression can be kernelized.

We are given a set of N training examples, {(x1, y1), . . . , (xN , yN )} where xn ∈ RD, yn ∈ {0, 1}.
We learn a logistic regression model hθ(x) = σ(θTx) using gradient descent where σ(x) = 1

1+e−x is
the sigmoid function.

In iteration t of gradient descent, we update θ ← θ−η
∑

n εnxn where εn = hθ(xn)−yn is the error
for the nth training sample, and η is the step size or learning rate.
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index x1 x2 y

1 0 0 −
2 0 -4 −
3 -1 -1 −
4 -2 -2 −
5 3 0 +
6 0 3 +
7 1 1 +
8 3 -1 +

Table 1: The dataset S Figure 1: Linear SVM

We map x to φ(x) and we would like to learn a logistic regression model σ(θTφ(x)) while only
working with the inner products φT (x)φ(x′).

(a) Assume we initialize θ to zero in the gradient descent algorithm, i.e., θ ← 0. Show that at
the end of every iteration of gradient descent, θ is always a linear combination of the training
samples: θ =

∑N
n=1 αnφ(xn).

(b) Using the above result, show how we can write hθ(x) to make a prediction on a new input
φ(x) by only using inner products of the form φ(x)Tφ(x′).

(c) The final step in kernelization is to show that we do not need to explicitly store θ. Instead
from part (a), we can implicitly update θ by updating αn. Show how αn is intialized and how
it is updated.

Problem 6 (Linear Regression)

In this problem, you will examine the behavior of a certain type of input perturbation for a prob-
abilistic linear regression setting.
Consider the following general generative model for regression:

• x ∼ p(x) is a distribution over input vectors x ∈ Rd

• y|x ∼ p(y|x) is a distribution over output scalars y ∈ R given x

Assume that the relationship between y and x is well modeled by a linear function y = wTx,
where w ∈ Rd, so that in the infinite dataset limit, the objective to be minimized for the regression
problem is

L0(w) = E
[
(wTx− y)2

]
where E stands for expectation. Now suppose the inputs are perturbed by zero-mean Gaussian
noise ε ∼ N (0, λI), which is independent of the training data. The new objective is

L(w) = E
[
(wT (x+ ε)− y)2

]
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(a) Compute and simplify L(w). Show all your work in detail, and write your answer in terms
of L0.

(b) Is there a relationship between this particular type of input perturbation and some type of
regularization? If so, what kind of regularizer is involved?
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