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Problem 1 (Kernel k-means)

First given a clustering Si, we will put

µi =
1

|Si|
∑
x∈Si

φ(x)

to minimize
∑

x∈Si
||φ(x)− µi||22

Following this, the optimal clustering is given by assigning xi to the cluster argmink f(i, k), where

f(i, k) = ||φ(xi)− µk||2

= φ(xi)
Tφ(xi)− 2φ(xi)

Tµk + µTk µk

= φ(xi)
Tφ(xi)−

2

|Sk|
∑
xj∈Sk

φ(xi)
Tφ(xj) +

1

|Sk|2
∑

xj ,xl∈Sk×Sk

φ(xj)
Tφ(xl)

= K(xi, xi)−
2

|Sk|
∑
xj∈Sk

K(xi, xj) +
1

|Sk|2
∑

xj ,xl∈Sk×Sk

K(xj , xl)

Therefore

class(i) = rgmin
k

1

|Sk|2
∑

xj ,xl∈Sk×Sk

K(xj , xl)−
2

|Sk|
∑
xj∈Sk

K(xi, xj)

Problem 2 (Boosting)

On this dataset, there are four nontrivial things that a stump could do:

s1 classifies the left two points as positive;
s2 classifies the right two points as positive;
s3 classifies the top two points as positive;
s4 classifies the bottom two points as positive.
So the function you end up learning could be anything of the form

ŷ(x) =

n∑
i=1

fi(x)

where each fi is one of the sj .
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Now, note that each copy of s1 in that sum cancels out a copy of s2, because they’re opposite, and
similarly for s3 and s4. So ŷ is really an integer combination ŷ(x) = as1(x) + bs3(x)

But the first half of that expression doesn’t change when you move from top to bottom, and the
second half always changes by the same amount (b). So we know that the output of ŷ must either
always increase as the datapoint moves from top to bottom (if b < 0), or always decrease (if b > 0).

If it always increases when moving from top to bottom, then it can’t get both the top-left and
bottom-left points correct (because the top one is greater than 0 and the bottom one is less than
0).

If it always decreases, then similarly it can’t get both the top-right and bottom-right points correct.

Therefore, no possible sum of boosted stumps can classify the dataset perfectly,

Problem 3 (SVM)

Recall the soft-margin SVM in the primal:

arg min
w,b,{ξn}

1

2
‖w‖2 + C

N∑
n=1

ξn

yn(wTxn + b) ≥ 1− ξn n ∈ {1, . . . , N}
ξn ≥ 0 n ∈ {1, . . . , N}

(a) αn represents the dual variable associated with constraint n. The support vectors are the
datapoints n such that the optimal values of α∗n, α∗n > 0. Thus, we have α∗1 > 0, α∗2 > 0 and
α∗n = 0 for n = {3, . . . , N}.
The KKT conditions (complementary slackness) require that α∗n

(
1− ξn − yn(w∗Txn + b∗)

)
=

0 and (C − α∗n)ξn = 0.

For n ∈ {3, . . . , N}, we have α∗n = 0 so that ξn = 0. For support vectors n ∈ {1, 2}, we have
α∗n > 0 so that ξn = 1− yn(w∗Txn + b∗).

Answers based on intuition are also acceptable,i.e., that slack is zero for non support vectors.

(b) i. Decreases

ii. Decreases

Problem 4 (Kernel)

First we expand the dot product inside, and square the entire sum. We will get a sum of the squares
of the components and a sum of the cross products.

(xTy + c)2 = (c+
n∑
i=1

xiyi)
2

= c2 +

n∑
i=1

x2i y
2
i +

n∑
i=2

i−1∑
j=1

2xiyixjyj +

n∑
i=1

2xiyic
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Pulling this sum into a dot product of x components and y components, we have

Φ(x) = [c, x21, · · · , x2n,
√

2x1x2, · · · ,
√

2x1xn,
√

2x2x3, · · · ,
√

2xn−1xn,
√

2cx1, · · · ,
√

2cxn]

In this feature mapping, we have c, the squared components of the vector x,
√

2 multiplied by all
of the cross terms, and

√
2c multiplied by all of the components.

Problem 5 (Logistic Regression and Perceptron (28 pts))

(a) From the update rule ∇wJ(w) =
∑n

i=1(hw(xi)− yi)xi.
From the expression for the gradient you can see that

∂J(w)

∂wj
=

n∑
i=1

(hw(xi)− yi)xi,j

∂2J(w)

∂wk∂wj
=

∂

∂wk

( n∑
i=1

(hw(xi)− yi)xi,j
)

=

n∑
i=1

∂

∂wk
hw(xi)xi,j

=
n∑
i=1

hw(xi)(1− hw(xi))xi,jxi,k

Therefore we have

∇2
wJ(w) =

n∑
i=1

hw(xi)(1− hw(xi))xix
T
i = XTDX

uTXTDXu = ||D
1
2Xu||22 > 0 ∀u 6= 0

(b)
wt+1 ← wt − ηt(hwt(xi(t))− yi(t))xi(t)

Here i(t) ∼ Uniform[1, . . . , n]

(c)
wt+1 ← wt − ηt(ŷti − yi)xi

When ŷti = yi, no update takes place, whereas when ŷti − yi = 1 or −1 the corresponding
update takes place. If we use new labels zi ∈ {−1, 1} instead of yi ∈ {0, 1} then the update
rule becomes

wt+1 ← wt + 2ηtzixi

For η = 0.5 we have the Perceptron algorithm as discussed in class.
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Problem 6 (EM algorithm and Gaussian Mixture Model)

The new estimates will be

w1 = (0.2 + 0.2 + 0.8 + 0.9 + 0.9)/5 = 0.6

w2 = (0.8 + 0.8 + 0.2 + 0.1 + 0.1)/5 = 0.4

µ1 = (0.2× 5 + 0.2× 15 + 0.8× 25 + 0.9× 30 + 0.9× 40)/(0.2 + 0.2 + 0.8 + 0.9 + 0.9) = 29

µ2 = (0.8× 5 + 0.8× 15 + 0.2× 25 + 0.1× 30 + 0.1× 40)/(0.8 + 0.8 + 0.2 + 0.1 + 0.1) = 14

4


