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Problem 1 (Hidden Markov Models)

(a) 0.3*0.9*0.6*0.5 =0.081

(b) The most likely assignment given O1 = A,O2 = B is X1 = 0, X2 = 1 You can use Viterbi, or
list all four possibilities.

(c) False. Conditional independent does not imply independent.

Problem 2 (EM algorithm and Gaussian Mixture Model)

(a) Using the Bayes’ Rule, we get that

P (component 1|x) =
(1/2)N (x|µ, 1)

(1/2)N (x|µ, 1) + (1/2)N (x|µ, 22)

Applying the three observations, we get

r11 =
(1/2)0.40

(1/2)0.40 + (1/2)(1/2)0.40
= 2/3

r11 =
(1/2)0.33

(1/2)0.33 + (1/2)(1/2)0.38
= 33/52

r31 =
(1/2)0.05

(1/2)0.05 + (1/2)(1/2)0.24
= 5/17

(b) First, note that the gradient of normal density function with mean µ and variance σ2 with
respect to mean µ is:

∂N (xi|µ, σ2)
∂µ

= N (xi|µ, σ2) ·
xi − µ
σ2

The log likelihood is

log p(X|µ) =
3∑
i=1

log

[
1

2
N (xi|µ, 1) +

1

2
N (xi|µ, 22)

]
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Take the derivative with respect to µ and set to zero:

∂ log p(X|µ)

∂µ
=

3∑
i=1

1
1
2N (xi|µ, 1) + 1

2N (xi|µ, 22)

[
N (xi|µ, 1) · xi − µ

12
+N (xi|µ, 2) · xi − µ

22

]

=

3∑
i=1

[
ri1(xi − µ) + ri2 ·

xi − µ
4

]

=
3∑
i=1

[(
ri1 +

1− ri1
4

)
xi −

(
ri1 +

1− ri1
4

)
µ

]
= 0

µ̂ =

∑3
i=1(ri1 + (1− ri1)/4)xi∑3
i=1(ri1 + (1− ri1)/4)

=
(3/4)4.0 + (151/208)4.6 + (25/68)2.0

(3/4) + (151/208) + (25/68)

Problem 3 (PCA)

(a) First step is zero centering however the four points are already zero centred. The matrix

X =


−1 1
2 2
−2 −2
1 −1


The goal is to find the eigenvector of XTX corresponding to the largest eigenvalue.

XTX =

[
10 6
6 10

]
det(XTX − λI) = λ2 − 20λ + 64. The eigen values are λ = 16, 4 and the eigen vector for
λ = 16 can be found by solving (XTX − 16I)p = 0 where p ∈ R2. Solving the equations we

get p1 = p2 and the eigenvector is therefore p =
(

1√
2
, 1√

2

)T
Note that you could have solved this geometrically, simply by noticing from the scatter plot
that the direction of maximum variance is indeed the p that has been obtained.

(b) The new coordinates are

z1 = x1 · p = 0

z2 = x2 · p = 2
√

2

z3 = x3 · p = −2
√

2

z4 = x4 · p = 0

The new coordinates are also zero centred, the variance is∑
i z

2
i

4
=

0 + (2
√

2)2 + (2
√

2)2 + 0

4
= 4

(c) In the original space the representations are x̂i = zip so we have

x̂1 = (0, 0)T

x̂2 = (2, 2)T

x̂3 = (−2,−2)T

x̂4 = (0, 0)T
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The mean reconstruction error is 1
4

∑
i ||xi − x̂i||22 = 1

(d) The direction of maximum variance also called as the principal vector will now be ( 1√
2
,− 1√

2
)T .

The points x1 and x2 lie along this direction therefore the reconstruction error is going to be
zero in this case.

Problem 4 (Kernels and SVM)

(a) i. We have Aij = K(x1, x2) = Φ(x1)
TΦ(x2) = Φ(x2)

TΦ(x1) = K(x2, x1) = Aji

ii. Let Φ(xi) be the feature map for the ith example and define the matrix B = [Φ(x1), · · · ,Φ(xn)].
It is easy to verify that A = BTB. Then, we have vTAv = (Bv)TBv = ||Bv||2 ≥ 0

(b) i. ∞, Decrease

ii. When C = 0, ξi can be arbitrary large; therefore, the model ignores the constraints, and
w = 0 is the optimal solution.

iii. False. When the data point is correctly classified but inside the margin, ξi is non-zero.

iv. True. Based on the dual representation.

v. i. W = (1, 1), b = −1

ii. Point 1,7,8

index x1 x2 y

1 0 0 −
2 0 -4 −
3 -1 -1 −
4 -2 -2 −
5 3 0 +
6 0 3 +
7 1 1 +
8 3 -1 +

Table 1: The dataset S Figure 1: Linear SVM

Problem 5 (Kernelized logistic regression)

(a) By induction.
At iteration t = 1, this is true since θ = −η

∑
n εnφ(xn).
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Assume this is true at iteration t. At iteration t+ 1, we have

θ ← θ − η
∑
n

εnφ(xn)

=
∑
n

αnφ(xn)− η
∑
n

εnφ(xn)

=
∑
n

(αn − ηεn)φ(xn)

=
∑
n

α′
nφ(xn)

(b)

hθ(x) = σ(θTφ(x))

= σ(
∑
n

αnφ(xn)Tφ(x))

(c) If we updated αn ← αn − ηεn and the relationship that θ =
∑

n αnφ(xn), the corresponding
update of θ would be

θ =
∑
n

αnφ(xn)

=
∑
n

(αn − ηεn)φ(xn)

=
∑
n

αnφ(xn)−
∑
n

ηεnφ(xn)

= θ − η
∑
n

εnφ(xn)

Problem 6 (Linear Regression)

(a)

L(w) = E
[
(wT (x+ ε)− y)2

]
= E

[
((wTx− y) +wT ε)2

]
= E

[
((wTx− y)2 + 2(wTx− y)wT ε+wT εεTw

]
= E

[
((wTx− y)2

]
+ E

[
2(wTx− y)wT

]
E [ε] +wTE

[
εεT
]
w

= L0(w) + λ||w||2

(b) In this setting, regression assuming this type of input perturbation turns out to be equivalent
to regression with an L2 regularizer.
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