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Problem 1 (HippeEn MARKOV MODELS)

(a) 0.3%0.9%0.6%0.5 =0.081

(b) The most likely assignment given O1 = A,O2 = B is X; = 0, X2 = 1 You can use Viterbi, or
list all four possibilities.

(c) False. Conditional independent does not imply independent.

Problem 2 (EM ALcORITHM AND GAUSSIAN MIXTURE MODEL)

(a) Using the Bayes’ Rule, we get that
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Applying the three observations, we get
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(b) First, note that the gradient of normal density function with mean p and variance o2 with
respect to mean p is:
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The log likelihood is
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Take the derivative with respect to p and set to zero:
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Problem 3 (pPcA)

(a) First step is zero centering however the four points are already zero centred. The matrix

()

-1 1
2 2
X = -2 =2
1 -1
The goal is to find the eigenvector of X7 X corresponding to the largest eigenvalue.
10 6
Ty _
XX = [6 10]

det(XTX — M) = A2 — 20\ + 64. The eigen values are A\ = 16,4 and the eigen vector for

A = 16 can be found by solving (X7 X — 161)p = 0 where p € R?. Solving the equations we
T

get p1 = p2 and the eigenvector is therefore p = (%, %)

Note that you could have solved this geometrically, simply by noticing from the scatter plot

that the direction of maximum variance is indeed the p that has been obtained.

The new coordinates are

z17 = x1-p=0
g = x2-p=2V2
23 = x3-p=—2V2
zg. = x4-p=20

The new coordinates are also zero centred, the variance is

22 _ 0+ (2v/2)2 + (2v/2)2 + 0

1 4 =4
In the original space the representations are &; = z;p so we have
& = (0,07
) (2,2)7
&3 = (-2,-2)7
&= (0,007



The mean reconstruction error is >, [|a; — 253 = 1

(d) The direction of maximum variance also called as the principal vector will now be (%, — %)T
The points x1 and z9 lie along this direction therefore the reconstruction error is going to be
zero in this case.

Problem 4 (KerngLs AND SVM)

(a) i We have A;; = K(x1,22) = ®(x1)T ®(22) = ®(22)T®(21) = K (22, 71) = Aj;
ii. Let ®(x;) be the feature map for the i*" example and define the matrix B = [®(z1), - - - , ®(x,)].
It is easy to verify that A = BTB. Then, we have v Av = (Bv)"Bv = ||Bv||> > 0
(b)  i. oo, Decrease

ii. When C' = 0, & can be arbitrary large; therefore, the model ignores the constraints, and
w = 0 is the optimal solution.

iii. False. When the data point is correctly classified but inside the margin, &; is non-zero.
iv. True. Based on the dual representation.
v. 1. W=(1,1),b=-1

ii. Point 1,7,8
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Table 1: The dataset S Figure 1: Linear SVM

Problem 5 (KERNELIZED LOGISTIC REGRESSION)

a) By induction.
y
At iteration t = 1, this is true since 0 = —n )" €,0(xy).



Assume this is true at iteration ¢. At iteration ¢ + 1, we have

0« 6-n) cdl(xy)
— Zan;m)—nZem(xn)
= ﬁ:(an—nenM(XZ)

ho(x) = (8" 6(x))
= U(Zan¢(xn)T¢(X))

(c) If we updated o, < o, — 1€, and the relationship that 6 = )" a,¢(x,), the corresponding
update of 8 would be

0 = Zan¢(xn)
= Z(O‘n_nen)ﬁb(xn)

= Z an¢(xn) — Z U€n¢(xn)
= 0-— Ui Z en(ﬁ(xn)

Problem 6 (LiNEaAR REGRESSION)

(a)
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(b) In this setting, regression assuming this type of input perturbation turns out to be equivalent
to regression with an L2 regularizer.



