
CM146: Introduction to Machine Learning Winter 2018

Midterm

Feb. 13th, 2018

• This is a closed book exam. Everything you need in order to solve the problems is
supplied in the body of this exam.

• This exam booklet contains four problems.

• You have 90 minutes to earn a total of 100 points.

• Besides having the correct answer, being concise and clear is very impor-
tant. For full credit, you must show your work and explain your answers.

Good Luck!

Name and ID: (2 Point)

Name /2
Short Questions /40
Perceptron /20
Decision Tree /18
Regression /20

Total /100
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Short Questions [40 points]

1. [21 points] True/False Questions (Add 1 sentence to justify your answer if the
answer is “False”.)

(a) When the hypothesis space is richer, over-fitting is more likely.
True.

(You may get full/partial credits if your answer is “False” and provide proper
explanation: For example: over-fitting also depends on many other factors.
The conclusion cannot be made only based on the size of hypothesis space.)

(b) Nearest neighbors is more e�cient at training time than logistic regression.
True.

(c) Perceptron algorithms can always stop after seeing �2
/R

2 number of examples
if the data is linearly separable, where � is the size of the margin and R is
the size of the largest instance.
False. Perceptron algorithm is guaranteed to stop after making R

2
/�

2 mis-
takes. (There are two mistakes in the statements. Pointing out any one of
them gets the full credit.)

(d) Instead of maximizing a likelihood function, we can minimize the correspond-
ing negative log-likelihood function.
True

(e) If data is not linearly separable, decision tree can not reach training error
zero.
False. Decision tree is a non-linear classifier and it can reach zero training
error even if the data is not linearly separable.

(f) If data is not linearly separable, logistic regression can not reach training
error zero.
True.

(You may get full/partial credits if your answer is “False” and provide proper
explanation: A logistic regression with non-linear mapping of input vector
can reach zero training error for data not linearly separable.

(g) To predict the probability of an event, one would prefer a linear regression
model trained with squared error to a classifier trained with logistic regression.

False. To predict the probability of an event, logistic regression is preferred.

2



2. [9 points] You are a reviewer for the International Conference on Machine Learn-
ing, and you read papers with the following claims. Would you accept or reject
each paper? Provide a one sentence justification if your answer is “reject”.

• accept/reject] “My model is better than yours. Look at the training error
rates!”
Reject. Low training error rates can lead overfitting.

• accept/reject “My model is better than yours. After tuning the parameters
on the test set, my model achieves lower test error rates!”
Reject. The parameters on the test set should not be tuned to achieve better
performance.

• accept/reject “My model is better than yours. After tuning the parame-
ters using 5-fold cross validation, my model achieves lower test error rates!”
Accept.

3. [10 points] On the 2D dataset of Fig. 1, draw the decision boundaries learned
by logistic regression and 1-NN (using two features x and y). Be sure to mark
which regions are labeled positive or negative, and assume that ties are broken
arbitrarily.

Figure 1: Example 2D dataset for question
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answer: See the figure below. 3 points for showing the decision boundary of
logistic regression is a line. 3 points for showing the decision boundary of 1-nn is
non-linear.

i. Logistic regression

ii. 1-NN
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Perceptron [20 points]

Recall that the Perceptron algorithm makes an updates when the model makes a
mistake. Assume now our model makes prediction using the following formulation:

y =

(
1 if w

T
x � 1,

�1 if w
T
x < 1.

(1)

1. [12 points] Finish the following Perceptron algorithm by choosing from the fol-
lowing options.

(a) wT
xi � 0 (b) yi = 1 (c) wT

x � 1 and yi = 1 (d) wT
x � 1 and yi = �1

(e) wT
xi < 0 (f) yi = �1 (g) wT

x < 1 and yi = 1 (h) wT
x < 1 and yi = �1

(i) xi (j) - xi (k) w + xi (l) w � xi

(m) yi(w + xi) (n) �yi(w + xi) (o) wT
xi (p) �wT

xi

Given a training set D = {xi, yi}mi=1

Initialize w  0.

For (xi, yi) 2 D:

if d

w  l

if g

w  k (or m)

Return w

Note: g, k, d, l or g, m, d, l are also correct.

2. [4 points] Let w to be a two dimensional vector. Given the following dataset, can
the function described in (1) separate the dataset?

Instance 1 2 3 4 5 6 7 8
Label y +1 -1 +1 +1 +1 -1 -1 +1
Data (x1, x2) (2, 0) (2, 4) (-1, 1) (1, -1) (-1, -1) (4, 0) (2, 2) (0, 2)

No. Despite the data is linearly separable, without the bias term, the data cannot
be separated by Eq. (1). (2 points for showing the data is linearly separable. Full
credits give to students showing after augmenting data, Eq. (1) can separate the
data.
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Instance 1 2 3 4 5 6 7 8
Label y +1 -1 +1 +1 +1 -1 -1 +1
Data (x1, x2) (2, 0) (2, 4) (-1, 1) (1, -1) (-1, -1) (4, 0) (2, 2) (0, 2)

3. [4 points] If your answer to the previous question is “no”, please describe how to
extend w and data points x into 3-dimensional vectors, such that the data can
be separable. If your answer to the previous question is “yes”, write down the w

that can separate the data.

We need to augment the data and the weight vector with one additional dimension
for the bias term. There are several ways to extend the data. The following is
one example.
Instance 1 2 3 4 5 6 7 8
Label y +1 -1 +1 +1 +1 -1 -1 +1
Data (x1, x2, x3) (2, 0, 1) (2, 4, 1) (-1, 1, 1) (1, -1, 1) (-1, -1, 1) (4, 0, 1) (2, 2, 1) (0, 2, 1)

Rubrics:

• Full points are given if the answer meets one of the following: a) The stu-
dent describes how to extend x (like [x1,x2,1]) and how to extend w (like
[w1,w2,w3]). b) The student provides a correct weight vector (e.g. w =
[-1,-1,3]).

• 2 points are given if the answer meets one of the following: a) The student
describes dimension extension methods on either w or x (but missing another
one). b) The student provides an incorrect 3-d weight vector (e.g. w =
[1,1,-3]) with some explanation about how to extend w or x.

• 0 points are given if the answer meets one of the following: a) The student
provides a 2-dim weight vector b) The student provides an incorrect 3-d
weight vector with no explanation.
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Decision Tree [18 points]

We will use the dataset below to learn a decision tree which predicts if people pass
machine learning (Yes or No), based on their previous GPA (High, Medium, or Low)
and whether or not they studied.

GPA Studied Passed
L F F
L T T
M F F
M T T
H F T
H T T

For this problem, you can write your answers using log2, but it may be helpful to
note that log2 3 ⇡ 1.6 and entropy H(S) = �

PK
v=1 P (S = v) log2 P (S = v). The

information gain of an attribute A is G(S,A) = H(S) �
P

v2V alue(A)
|Sv |
|S| H(Sv), where

Sv is the subset of S for which A has value v.

1. [ 4 points] What is the entropy H(Passed)?

�2
6 log

2
6 �

4
6 log

4
6 = �1

3 log
1
3 �

2
3 log

2
3 ⇡ 0.92 (or 14

15) (you don’t have to simplify
it).

2. [ 4 points] What is the entropy G(Passed, GPA)?

H(Passed)� 1
3(�

1
2 log

1
2�

1
2 log

1
2)�

1
3(�

1
2 log

1
2�

1
2 log

1
2)�

1
3⇥0 = 0.92�0.66 = 0.26

(or 4
15)(Full credits also give to answer without simplification.)

3. [ 4 points] What is the entropy G(Passed, Studied)?

H(Passed) � 1
2(�

2
3 log

2
3 �

1
3 log

1
3) �

1
2 ⇥ 0 = 0.92 � 0.46 = 0.46 (or 7

15 , or
1
2H(Passed)) (Full credits also give to answer without simplification.)

4. [ 6 points] Draw the full decision tree that would be learned for this dataset. You
do not need to show any calculations.

The following one is the one learned by the ID3 algorithm.
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Linear Regression [20 points]

1. [6 points] Describe one application of linear regression. Please define clearly what
are your input, output, and features.

Any application. 2 points for input, output, and features, respectively.

2. [6 points] Given a dataset {(x(i)
, y

(i))}Mi=1 in a two dimensional space. The objec-
tive function of linear regression with square loss is

J(w1, w2) =
1

2

MX

i=1

(yi � (w1x
(i)
1 � w2x

(i)
2 ))2, (2)

where w1 and w2 are feature weight to be learned. Write down one optimization
procedure that can learn w1 and w2 from data. Please be as explicit as possible.

There is a typo in the Eq. (2); however it doesn’t a↵ect the model. Showing
answer to solve Eq. (2) or

J(w1, w2) =
1

2

MX

i=1

(yi � (w1x
(i)
1 + w2x

(i)
2 ))2,

both get full credits. We show the answer of the latter case.

Closed-form solution: 6 points for correct formulation. 4 points for stating there
is a closed-form solution.

SGD/GD: 6 points for correct procedure and gradient. 4 points for correct pro-
cedure or correct gradient.
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3. [8 points] Prove that Eq. (2) has a global optimal solution. (Full points if the
proof is mathematically correct. 4 points if you can describe the procedure for
proving the claim.)

To prove Eq. (2) has a global optimum, we have to show the function is convex
(2 points). To prove the function is convex, we need to demonstrate the Hessian
matrix (or the second derivatives) is positive semi-definite (2 points).

The Hessian of Eq. (2) is

H =

"P
(x(i)

1 )2
P

x
(i)
1 x

(i)
2P

x
(i)
1 x

(i)
2

P
(x(i)

2 )2

#
(3)

(2 points)

To show H is positive semi-definite, we have to prove for every vector z 6= 0,
z
T
Hz � 0. This can be done by the following equations:

z
T
Hz =

X
(x(i)

1 )2z21 + 2
X

x
(i)
1 x

(i)
2 z1z2z1z2 +

X
(x(i)

1 )2z22

=
X

(z1x
(i)
1 + z2x

(i)
2 )2

� 0

(4)

(2 points)
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