
CM146: Introduction to Machine Learning Fall 2018

Midterm

Nov. 5th, 2018

• This is a closed book exam. Everything you need in order to solve the problems is supplied
in the body of this exam.

• This exam booklet contains Five problems.

• You have 90 minutes to earn a total of 100 points.

• Besides having the correct answer, being concise and clear is very important. For
full credit, you must show your work and explain your answers.

Good Luck!

Name and ID: (2 Point)

Name /2
True/False Questions /18
Short Questions /23
Decision Tree /15
Perceptron /23
Regression /19

Total /100
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1 True/False Questions (Add a 1 sentence justification.) [18 pts]

(a) (3 pts) For a continuous random variable x and its probability density function p(x), it holds
that 0  p(x)  1 for all x.

False: the value of the probabilistic density function does not need to be smaller than 1. It’s
just that the area under the curve equals 1.

(b) (3 pts) K-NN is a linear classification model.

False: kNN is a non-linear classifier where the decision boundaries resemble Voronoi diagrams.

(c) (3 pts) Logistic regression is a probabilistic model and we use the maximum likelihood
principle to learn the model parameters.

True: Logistic Regression is a probabilistic model and we use the binary cross-entropy loss
which is derived from MLE.

(d) (3 pts) Suppose you are given a dataset with 990 cancer-free images and 10 images from
cancer patients. If you train a classifier which achieves 98% accuracy on this dataset, it is a
reasonably good classifier.

False: Even with a classifier which always predicts ”cancer-free”, one could get 99% accuracy.

(e) (3 pts) A classifier that attains 100% accuracy on the training set is always better than a
classifier that attains 70% accuracy on the training set.

False. It is possible that the classifier is overfitted.

(f) (3 pts) A decision tree is learned by minimizing information gain.
False: Nope, maximizing information gain or minimizing entropy.
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2 Short Questions [23 pts]

(a) (4 pts) What is the main di↵erence between gradient descent and stochastic gradient descent
(in one sentence)? Which one require more iterations to converge, why?

SGD updates the model after seeing one example, while GD updates the model after com-
puting the gradient using the entire dataset. SGD usually takes more iterations to converge
although each iteration takes less time.

(b) (3 pts) What is the motivation to have a development set?

Development set gives us a good estimate of the model performance on unseen examples.

(c) (3 pts) Describe the di↵erences between linear regression and logistic regression (in less than
two sentences). Logistic regression predicts the probability P (y = 1 | x); therefore the output
value is restricted in [0,1], while the output of linear regression can be any real value.

(d) (3 pts) Consider the models that we have discussed in lecture: decision trees, k-NN, logistic
regression, Perceptrons. If you are required to train a model that predicts the probability
that the patient has cancer, which of these would you prefer, and why?

Logistic regression, being a probabilistic model can be used for predicting the probability of
an event.

(e) (10 pts) Given n linearly independent feature vectors in n dimensions, show that for any
assignment to the binary labels you can always construct a linear classifier with weight vector
w which separates the points. Assume that the classifier has the form sign(w · x).
Lets define the class labels y 2 {1,+1} and the matrix X such that each of the n rows is
one of the n dimensional feature vectors. Then we want to find a w such that sgn(Xw) = y.
We know that if Xw = y then sign(Xw) = y. Since X is composed of linearly independent
rows, we can invert X to obtain w = X

�1
y. Therefore we can construct a linear classifier that

separates all n points. Interestingly, if we add an additional constant term to the features,
we can separate n+ 1 linearly independent points in n dimensions.
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3 Decision Trees [15 pts]

For this problem, you can write your answers using log2, but it may be helpful to note that
log2 3 ⇡ 1.6 and entropy H(S) = �

PK
v=1 P (S = v) log2 P (S = v). The information gain of an

attribute A is G(S,A) = H(S) �
P

v2V alue(A)
|Sv |
|S| H(Sv), where Sv is the subset of S for which A

has value v.

(a) We will use the dataset below to learn a decision tree which predicts the output Y, given by
the binary values of A, B, C.

A B C Y
F F F F
T F T T
T T F T
T T T F

i. (2 pts) Calculate the entropy of the label y.

H(Y ) = �
h2
4
log(

2

4
) +

2

4
log(

2

4
)
i

ii. (5 pts) Draw the decision tree that will be learned using the ID3 algorithm that achieves
zero training error.

iii. (3 pts) Is this tree optimal (i.e. does it get minimal training error with minimal depth?)
explain in two sentences, and if it isn’t optimal draw the optimal tree.

although we get better information gain by splitting on A, Y is just a function of B and
C i.e. Y = B XOR C, hence the best tree is:
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(b) (5 pts) You have a dataset of 400 positive examples and 400 negative examples. Now suppose
you have two possible splits. One split results in (300+, 100-) and (100+, 300-). The other
choice results in (200+, 400-), and (200-, 0). Which split is most preferable and why?
Using the entropy criterion we can determine the better split:

H(S1) = �[
3

4
log(

3

4
) +

1

4
log(

1

4
)]

H(S2) = �[
3

4
(
1

3
log(

1

3
) +

2

3
log(

2

3
)) +

1

4
(
1

1
log(1))] = �[3

4
(
1

3
log(

1

3
) +

2

3
log(

2

3
))]

As H(S1) > H(S2), S2 is the better split.
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4 Perceptron Algorithm [23 pts]

(a) (4 pts) Assume that you are given training data (x, y) 2 R
2 ⇥ {±1} in the following order:

Instance 1 2 3 4 5 6 7 8
Label y +1 �1 +1 �1 +1 �1 +1 +1
Data (x1, x2) (10, 10) (0, 0) (8, 4) (3, 3) (4, 8) (0.5, 0.5) (4, 3) (2, 5)

We run the Perceptron algorithm on all the samples once, starting with an initial set of
weights w = (1, 1) and bias b = 0. On which examples, the model makes an update?

Assume that the model digests the data samples in the given order, it will update the param-
eters at points 2,4,5,6.
When y(wT

x)  0, the model is making a mistake. Then there will be an update.

(If you update only when y(wT
x) < 0, you will get answer: 4,5,6).

(b) (8 pts) Suggest a variation of the Perceptron update rule which has the following property:
If the algorithm sees two consecutive occurrences of the same example, it will never make
a mistake on the second occurrence. (Hint: determine an appropriate learning rate that
guarantees this property). Prove your answer is correct.

The update rule is :

w  w + ⌘yx, where ⌘ � �y(wT x)
||x||2

Prove: Let wi be the weight before making the mistake and wi+1 be the updated weight.
We want ywT

i x < 0 but ywT
i+1x � 0

wi+1 = wi + ⌘yx

yw
T
i+1x = yw

T
i x+ ⌘y

2||x||2 � 0

⌘ � �y(wT
i x)

||x||2

(suggesting any ⌘ satisfying this condition will get full scores.)
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(c) (3 pts) Linear separability is a pre-requisite for the Perceptron algorithm. In practice, data
is almost always inseparable, such as XOR.

x1 x2 y

�1 �1 �1
�1 +1 +1
+1 �1 +1
+1 +1 �1

Provide a solution to convert the inseparable data to be linearly separable. The XOR can be
used for the illustration.
Add one more feature x1 · x2, then the data is linear separable.
(There are many possible solutions).

(d) (3 pts) Design (specify w0, w1, w2 for) a two-input Perceptron (with an additional bias or
o↵set term) that computes “OR” Boolean functions. Is your answer the only solution?

x1 x2 y

-1 -1 -1
1 -1 1
1 1 1
-1 1 1

w0 = w1 = w2 = 1 is one possible solution. This is not the only one.
Any solutions are correct when y(w0 + w1x1 + w2x2) > �, where � � 0

(e) (5 pts) What is the maximal margin � in the above OR dataset.

When w0 = w1 = w2 = 1, the model has a largest margin, and the distance between closest
point to the separating hyper-plane is � = 1p

2
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5 Logistic Regression[19 pts]

Considering the following model of logistic regression for a binary classification, with a sigmoid
function �(z) = 1

1+e�z :

P (Y = 1|X,w0, w1, w2) = �(w0 + w1X1 + w2X2)

(a) (3 pts) Suppose we have learned that for the logistic regression model, (w0, w1, w2) =
(� ln(4), ln(2),� ln(3)). What will be the prediction (y = 1 or y = �1) for the given
x = (1, 2)?

exp(�z) = exp{ln(4)� ln(2) + 2 ln(3)}
= exp(ln(4)) exp(ln(2�1)) exp(ln(32)}
= 4⇥ 1/2⇥ 9 = 18

�(z) =
1

1 + exp(�z)

=
1

1 + 18
=

1

19

As P (Y = 1|X,w0, w1, w2) = �(Z) < 1/2, the prediction is y = �1.

(b) (6 pts) Is logistic regression a linear or non-linear classifier? Prove your answer.
Given x, we predict y = 1 if P (y = 1|x,w) = �(wT

x) � 1/2. This reduces to w
T
x � 0 which

is a linear classifier.
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(c) (10 pts) In the homework, we mention an alternative formulation of learning a logistic
regression model when y 2 {1, 0}

argmax
w

mX

i=1

yi log �(w
T
xi) + (1� yi) log(1� �(wT

xi)).

Derive its gradient.

Solution:

Let’s denote

J(w) =
mX

i=1

yi log �(w
T
xi) + (1� yi) log(1� �(wT

xi)).

Recall that we have �0(z) = �(z)(1� �(z)). Thus, we have

rJ(w) =
mX

i=1

✓
yi

�(wTxi)
�0(wT

xi) +
1� yi

1� �(wTxi)
�0(1� w

T
xi)

◆

=
mX

i=1

✓
yi

�(wTxi)
�(wT

xi)(1� �(wT
xi))xi �

1� yi

1� �(wTxi)
�(wT

xi)(1� �(wT
xi))xi

◆

=
mX

i=1

�
yi(1� �(wT

xi))xi � (1� yi)�(w
T
xi)xi

�

=
mX

i=1

�
yi � �(wT

xi)
�
xi
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