UCLA Computer Science 35L Final Exam - Winter 2019

Open book, open notes, closed computer.

100 points total, 180 minutes total, 1 point = 1.8 minutes

Each top-level question is 10 points and should take 18 minutes.
Write answers on the exam.

Name:
Student ID:
total
e S e Tt Sy
1 |2 |3 | 4 |5 |6 | 7 |8 |9 |10 |
I I I I I I I I I I
I I | I I I I I I I
e P

1. You are Dr. Eggert with username ‘eggert’ and group ‘csfac’, and
are trying to review some basic concepts. Your current working
directory is '~/exam/'.

There are two files you are particularly interested in: foo and bar.
The following are the contents and permissions on those files. (The
flag -i prints the file's file inode number.)

$ cat partl/foo

This is the finals for CS35L

I am foo

$ cat part2/bar

Checking hard and symbolic links

I am bar
$ ls -1i partl/
total 0O

3165230 -rw-r--r-- 1 eggert csfac 38 Mar 15 02:37 foo
$ ls -1i part2/

total 0O

3165232 -r--r--r-- 1 eggert csfac 42 Mar 14 14:35 bar

You execute the following commands :

$ ln partl/foo baz
$ ln -s part2/bar qux

Answer the following questions based on the information above. If you
think there is any error while executing the commands above or the
commands mentioned later, you can briefly describe the error.

la (1 point). What do the above commands mean?

1b (1 point). Write a shell command or commands to count the total
symbolic links from the current directory up to 2 levels of
directories below the current directory. (Hint : 'find -maxdepth N'
descends at most N directory levels below the command line arguments.)

lc (2 points). What will be the inode (index-node) of the files baz
and qux respectively?

1d (2 points). After executing the below commands, what will be the
contents of the files baz and qux?

$ mv partl/foo partl/foobar
$ mv part2/bar part2/barfoo

le (2 points). You execute the commands in step (d). What will be the
content of the files baz and qux after executing the below commands?

$ rm partl/foobar
$ rm part2/barfoo

1f (2 points). For this question assume that we do not execute the
commands in parts (d) and (e).

What will be the output of the below mentioned commands?

$ echo “Updating files” >> baz
$ echo “Updating files” >> qux
$ cat partl/foo
$ cat part2/bar

(page 2)

(page 3)
2. We have a directory with many genetic data files, each named like this:

FirstnameLastname.gene_ID(chromosome_number)

FirstnameLastname contains only alphabetic characters (no spaces). Firstname
and Lastname both begin with one capitalized letter, and both Firstname and
Lastname must be at least 2 letters long. The gene ID is a combination of
letters and digits and chromosome number is a number from "1" to "22". E.g.:

JoeBruin.ENSGO0000112137(6)

A FirstnamelLastname pair may appear in multiple files, and a gene_ID may appear
in multiple files.

2a (3 points). Assume that we decide to list the contents of the directory and
store the result in a variable. Which of the following would successfully
accomplish this (if any)? Explain your reasoning for each. (Assume that the
directory path is stored in the variable GDIR).

A. LIST="1s $GDIR®
B. LIST='"1s $GDIR'
C. LIST=""1s $GDIR™"

2b (2 points). Assume for this part, that one of the above commands worked, and
that we now have the results of the 1s command in LIST. Write a Bash script
(you may skip the shebang line) that outputs to stdout every filename in LIST
that does not have read permission granted. (Note: the "-r FILE" option of the
test command returns true if FILE exists and read permission is granted.)

2c (1 point). Now assume that we did not do the steps in A and B. Instead, we
have decided to run our 1ls command and pipe it into a grep command. Given our
specific problem, would it be more advantageous to use Basic Regular
Expression, or Extended Regular Expression? Briefly explain.

2d (4 points). Using whichever mode (BRE or ERE) you chose in part C, write a
regular expression that could be used in a grep command to output only the
files that meet the following criteria. Lastname begins with an "R", "C", "S",
or "Q". The gene ID begins with "ENSG" followed only by 1 or more numerical
digits. Lastly, the chromosome number has at least 2 digits.

(page 4)
3a. A Makefile has the following contents:

move : car
car : fuel.o wheels.o car.o
g++ -0 car fuel.o wheels.o car.o
wheels.o : wheels.cpp wheels.h
g++ -c wheels.cpp
fuel.o : fuel.cpp fuel.h
g++ -c fuel.cpp
car.o : car.cpp wheels.h fuel.h
g++ -C car.cpp
clean :
rm -f wheels.o fuel.o car.o car

Assume that all the header files are present in the same directory as
the Makefile. Look at the contents of the Makefile thoroughly and
answer the following questions:

3al (2 points). What happens when you run the command ‘make all’ on
the terminal? Explain.

3a2 (1 point). Why do we need makefiles? List any two distinct
reasons.

3b (2 points). The first two lines of a patchfile (exam_patch.patch) are as
follows:

---abc/cs351/Documents/exam.c
+++xyz/cs351/Documents/exam.c

Given that exam _patch.patch is present in the c¢s351 directory, write
the appropriate patch command to update exam.c if the current working
directory is Documents.

3c (5 points). A Python 3 file (armstrong.py) has the following
statements:

def numDigits(n):
#Write your code here

def isArmstrong(n):
#Write your code here

n = int(input())
print("Is", n, "an Armstrong number?", isArmstrong(n))

Complete this Python 3 file by defining the isArmstrong(n) and
numDigits(n) functions such that the Python script does not throw any
errors when it is run. Throw an appropriate exception for negative
numbers. It is guaranteed that the input is an integer.

Note:

a) isArmstrong(n) should return "Yes" or "No".

b) An Armstrong number of x digits is a positive integer such that the
sum of the nth power of its digits is equal to the number itself.

Examples:

153 is an armstrong number because 13 + 53 + 33 = 153 (the number
itself).

Similarly, 1634 is an Armstrong number too since 14 + 64 + 34 + 44 =
1634.

(page 5)

(page 6)

4. Look at the code snippet below and write what gets printed at every

line. Use underscores

#include <stdio.h>
char *c[] = {"the",
char **cp[] {c+3,
char ***cpp cp;

int main(void)

{
printf("ss\n",
printf("ss\n",
printf("%ss\n",
printf("s%ss\n",
printf("s%ss\n",
return 0;

for spaces:

"quick brown fox",
c+2, c+l, c, c+4};

** (cpp+3)); //Line
**(cp+4)+4); //Line
** (++cpp)) ; //Line
**kcp); //Line
**(++cpp)+5); //Line

output:

output:

output:

output:

output:

"jumped" ,

UG WNRE

"over the",

“lazy dog"};

5. Consider the following program and two text files:

question.c:

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int

main(void)

{
int fdl,fd2,sz1,sz2;
char *cl = (char *) calloc(100, sizeof(char));
char *c2 = (char *) calloc(100, sizeof(char));

fdl
fd2

open("contentl.txt", O _RDWR);
open("content2.txt", O _RDONLY);

if (fdl < 0){
perror("Error in opening contentl.txt");
exit(1);

}

if (fd2 < 0){
perror("Error in opening content2.txt");

exit(1);
}
szl = read(fdl, cl, 12);
sz2 = read(fd2, c2, 8);

printf("fdl = %d, fd2 = %d \n", fdl, fd2);
printf("Called read which returned %d \n", szl);
printf("Content read: %s \n", c2);
write(fd2, cl, szl);
write(fdl, c2, sz2);
close(fdl);
close(fd2);
}
contentl. txt:
Lord of the Rings
content2.txt:
Charlie_Chaplin

Each text file consists of just one line; underscores (_) denote
spaces, and the text lines do not have leading spaces.

5a (1 point). Will the above program execute? If yes, what is the
output of the program? If no, why would it not execute?

5b (1 point). What are the contents of contentl.txt and content2.txt
post execution of the above code? (Rewrite the original contents of
the file if you said that the program would not execute.)

(page 7)

Let’s say I change the open functions in this problem as given
below. (The rest of the code remains unchanged.)

fdl
fd2

open("contentl.txt", O_RDWR | O_APPEND);
open("content2.txt", O_RDWR);

After execution of the modified program on the original data:

5c (1 point). What are the contents of contentl.txt?

5d (1 point). What are the contents of content2.txt?

5e (2 points). What functions would you change in the above programs
to move the program from using system calls to inbuilt library
functions? Mention both the functions you would change and their
equivalent replacements.

5f (2 points). Comment on the performance of the code if you had
written it using the library functions you listed in part (e). Which
would be faster and why?

59 (2 points). Rewrite the above code to print the entire contents of
contentl.txt and content2.txt using system salls. Do not use
functions printf(), puts(), etc.

(page 8)

6. Parallel Computing & Synchronization

6a (2 points). Overhead of mutex lock and unlock. In the table below,
you are given 3 different snippets of using a mutex to solve critical
sections. Assume they are running on the same machine. Please give
the rank of their running time (e.g. “A takes more time than B, which
takes more time than C”) and briefly explain why.

/* A X/

int N = 10000000;

pthread_mutex_lock(&nm);

for (int 1 = 0; i < N; i++)
sum++;

pthread _mutex_unlock(&m);

/* B */

int N = 10000000;

for (int 1 = 0; i < N; i++) {
pthread_mutex_lock(&m);
sum++,
pthread_mutex_unlock(&nm);

}

/* C */

int N = 10000000;

int local = 0;

for (int 1 = 0; 1 < N; 1i++)
local++;

pthread_mutex_lock(&m);

sum += local;

pthread_mutex_unlock(&nm);

6b. Multithreaded time. Here are the outputs of the 'time' command

when the multi-threaded version of the sort program above was executed

on the 16 core server.

Threads used :
Threads used :
Threads used :
Threads used :

real Om31.698s user Om31.607s sys Om0.018s
real Oml6.403s user Om31.796s sys Om0.017s
real Oml0.803s user Om31.750s sys Om0.017s
real Om7.012s user 0m32.989s sys O0m0.015s

R NPRE

Please answer the following questions:

6bl (1 point). What could be a possible reason for the 'user' time
being almost the same in all the cases?

6b2 (1 point). Why is the 'user' time greater than the 'real' time in
some of the cases?

6b3 (1 point). What could happen to the above times, if the server
administrators set a policy that allowed your programs to use at most
2 of the cores?

(page 9)

6¢c (5 points). Multithreaded Sort. You are required to sort a set of
1 billion integer scores in descending order. This can take a very
long time if your program is single threaded. Your task is to write a
multi-threaded program, using pthreads, that distributes the workload
across a set of 16 threads. Some starter code is given below. The
standard library qsort() function, with a compare() function, should
be used to do the sorting per thread. You don't have to rewrite
anything that is already given below.

#include <stdio.h>
#include <math.h>

enum { SCORE_COUNT = 1000000000 };
enum { NTHREADS = 10 };

//Your code here [1]

int main(int argc, char** argv) {
int *scores = (int*) malloc(sizeof(int) * SCORE _COUNT);
if(!scores) {
fprintf(stderr, “Cannot allocate memory!\n”);
exit(-1);
}

// Assume the following function call loads values into 'scores'
LoadScores(scores) ;

// Assume the following function call prints the sorted values
PrintScores(scores);

free(scores);

return 0;

(page 10)

7. You have maintained a C project. The below is the output of 1s
command when applied on your project directory:

$ Us
main.c foo.c bar.c foo.h bar.h type.h

And you know that

foo.h includes type.h

main.c includes foo.h and bar.h

bar.c does not include any header files.
7a (6 points). Write a Makefile that:

A. When you type make, it will generate an executable called criu
compiled from main.c, foo.c and bar.c.

B. When you change one of the .c or .h files, only minimal number of
the .c files got recompiled and the newly created hello can
correctly reflect your change.

C. When you type make clean, it will remove all the intermediate
file generated by the compilation process.

D. When you type make tarball, it will generate a bzip2 compressed
file named clean.tar.gz that contains all the .c file .h file
listed by the 1s command and the Makefile itself.

(page 11)

7b (4 points). A buggy Makefile may overwrite your own source code!
For example, consider the following Makefile that compiles hello.c to
executable hello:

default: hello.c
gcc -0 hello.c hello.c

When you type 'make', the hello.c will be overwritten with the hello.c
executable.

You are afraid that there may be potential bugs in the Makefile written
in part (a) which will overwrite the existing source code.

Add a new target called protection into the Makefile you have written
in part (a) to prevent Makefile from overwriting your source code
files. Once you have typed make protection in the terminal to execute
the target, even if there is a bug in the Makefile that will overwrite
the source code files, the corresponding target will fail.

You are not allowed to move any files outside the current directory or
create any new files.

Write down the protection target and related target (if any) below.

(page 12)

(page 13)
8. This question has multiple-choice subproblems.
For each such problem, write the single best answer,
which will be (i), (ii), (iii), (iv), or (v).

8a (2 points).

(1). If you don’'t trust your server, you cannot use OpenSSH to connect
to it, as it can easily corrupt your client.
(ii). If you don’t trust your client, you can still use OpenSSH
to connect to a trusted server.
(iii). If you don’t know the name or IP address of your server,
you can use OpenSSH to discover this info in a secure way.
(iv). If you don’'t know the name or IP address of your client,
you can still use OpenSSH to connect to a server.
(v). If you don’t trust your network, you can still use
OpenSSH to discover whether your server is running.

8b (2 points).

(1). ssh-agent improves security by making a copy of private keys.

(ii). ssh-agent acts on your behalf by running on the server
and executing commands there, under your direction.

(iii). Even if the attacker surreptitiously replaces the ssh-agent
program with a modified version, your communications will
still be secure.

(iv). ssh-agent eliminates all need for password authentication
when communicating to the SEASnet GNU/Linux hosts.

(v). If you successfully use a typically-configured ssh-agent
and then log out from the client and then log back in again,
you can then connect to the same SSH server again without
typing any additional passwords or passphrases.

8c (2 points).

(1). OpenSSH typically uses public-key encryption for
authentication, because private-key encryption is less secure.

(ii). OpenSSH typically uses private-key encryption for
data communication, because public-key encryption is
less efficient.

(iii). When you run ‘ssh’, it chooses its authentication key
randomly from a large key space, to make eavesdropping
harder.

(iv). The OpenSSH client and server are essentially symmetric,
so that it’'s easy and common to use the same program
as either a client or a server.

(v). Once your private keys are 1024 bits long, there’s no
point making them any longer, as they're impossible
to break.

8d (2 points).

(1).

OpenSSH is not limited to just one client-server connection;
for example, a team of five people can use OpenSSH to
communicate information to each other.

For security, OpenSSH refuses to connect to programs written
by other people; for example, a client running the OpenSSH
code will connect only to a server running the OpenSSH code.
Although port forwarding can be used to display from an
OpenSSH server to an OpenSSH client, the reverse is not
possible: you cannot use port forwarding to display from an
OpenSSH client to an OpenSSH server.

For security, port forwarding cannot be chained: that is,
you cannot ssh from A to B, and then from B to C, and use
port forwarding to let a program run on C and display on A.
When using port forwarding when connecting to SEASnet,

one should take care not to create a forwarding loop,

as this can lead to a cycle of packets endlessly circulating
on the Internet.

8e (2 points).

(i).

(ii).

(iii).

(iv).

It’'s not a good idea to connect to a SEASnet GNU/Linux server
and use GPG on the server to sign a file, because then an
attacker on the network can easily snoop your GPG passphrase.
A detached signature file must be protected as securely

as the private key it’s based upon; otherwise an attacker
will be able to forge your signature more easily.

When generating a key pair it’s important to use a private
entropy pool on SEASnet, not the shared pool that everybody
can access, because otherwise an attacker on SEASnet might be
able to guess your key more easily by inspecting the public
entropy pool.

Exporting a GPG public key to ASCII format neither

improves nor reduces its security.

Because a detached cleartext signature isn’t encrypted,

it is easily forged by an attacker with access to the

file being signed.

(page 14)

9. Ava and Max are working on a project, using git as a versioning
tool. The project is in a repository called Asymmetry, and is stored
locally, since it is just a small project. Ava has checked out from
the master into a branch called issue42, and Max into a branch called
issued49 (both these branches are set to track the master) The state of
the repo at this time is that it has three commits, arranged as
follows:

c4lfa is the oldest (original) commit.

8acll’'s parent commit is c41lfa.

6ab77’'s parent commit is 8acll.

6ab77 is tagged by ‘master’, ‘issued2’, and ‘issued49’.

At the commit 6ab77, the repository has the following files:

Application.py
dbconn. py
frontend. py
index.html
README . md
structure.css

Ava, in her branch issue42, creates two files - format.py and
clean.py; modifies frontend.py, ensures her code works as expected,
and then runs the following commands:

git status

git add format.py frontend.py

git clean --force

git commit -m “issued42: adding prettify patch”

git checkout master

git merge issued42 (this merges the code with the master branch)
git tag -a 1ss42 -m "commit for issue42”

While Ava is working on her fixes, Max is also developing his end of
the code, on his branch. He modifies dbconn.py and creates

test data.csv and testpage.html, tests his code, and runs the
following commands:

git status
git add dbconn.py test data.csv
git commit -m “issued9: testcases for the database”

However, he does not run the merge commands:

git checkout master
git merge issue49

until the next day, by which time Ava is done with her development
(and git commands).

[continued on next page]

(page 15)

9a (1 point). What command(s) should Max run before running the
checkout & merge commands above to ensure that he has (and tests) the
latest version of the code from the master, including Ava’s? Assume he
knows there will be no conflict with their files. Select any one:

git fetch
git fetch && git status
git fetch && git merge
git revert

N w>

9b (3 points). List the files in the repository (in the master branch)
once Ava, Max have pushed their code. Indicate which file(s) are
modified and which have been added.

9c (3 points). A week or so later, QA finds a problem with the way Ava
has fixed issue 42. She has to fix it again, but unfortunately, her
laptop disk has been reformatted since then and she’s lost all her
local changes. What's the best way Ava can get her specific fix back
and work on it? Specify the command(s) for the same.

9d (3 points). There is also an issue, it is later discovered, with
the way Max has written some of his testcases. Unfortunately, he
hadn’t Ava’s foresight when he did the git push, so he must do things
differently. How can he go about retrieving his commit ID, given that
he remembers that he put the issue ID (issue49) first, and the word
“testcases” somewhere later, in his commit message? (Use any git
and/or Linux commands necessary.)

(page 16)

10 (10 points). Consider the following ACM TechNews summary of an
article published in the New York Times on March 14. Explain the
relationship between this article’s topic and the ACM TechNews topic
that you summarized in your solution to Assignment 10. Or, if the two
topics are completely unrelated, explain why they are unrelated.

"Facebook's Daylong Malfunction Is Reminder of Internet's Fragility"

Facebook said it has corrected a technical error that caused a
nearly 24-hour-long service interruption for Instagram, WhatsApp,
Messenger, and other Facebook properties this week. According to a
Facebook spokesperson, a "server configuration change" had a
cascading effect throughout the company's network, triggering a
recurrent loop of problems that kept escalating. The incident serves
as a reminder that the Internet can still be hobbled by human

error. For years, Facebook has recruited engineers on the idea that,
within weeks, they can release computer code that reaches billions
of people, especially as the company devises a strategy to
consolidate the infrastructure of its "family of apps." However, the
outage demonstrated that the more tightly intertwined a network
becomes, the more likely a small technical problem caused by a
single employee can have far-reaching consequences.

(page 17)

