1. Lost at C? (8 points): The following problem assumes the following declarations:

int x = random();

int y = random();

double d = foo(); //d is not NaN
unsigned ux = (unsigned) x;

For the following C expressions, circle either Y or N (but not both). If you circle the right answer, you
get +2 points. If you circle the wrong answer, you get -1 point. If you do not circle anything, you get 0
points. So do not just guess wildly.

Always True?

3\

a. ((x+ty)<<d)+y-x==17*p+15%x LY N
b, (x>>1)<<1)<=x 9 N
c. x<0 = ((int) (ur>>1) <0 Y)
AWaSS >0
d. d=(float)d =>d<4x10* T gt ﬁ‘j
\ - O ' s .. N o

Note that “=>” represents an implication. A = B means that you assume A is true, and your answer
should indicate whether B should be implied by A —i.e. given that A is true, is B always true?

2. Boole’s Foolery (8 points): Suppose A and B are single bit values.
a. Which of the following is equivalent to 4 xor B?

A) (4+B) % 2

B) (4|B) && !(4 & B)
C) /(4 &B)

D) (A&B)| (4 & !B)

Note that % is the modulo operator.

b. Which one of the following expressions is equivalent to 4 | (B & C)?
A)IA& !B &C)
B) /(A& !B &C))
C) A& !(IB & IC)
D) /(!4 & !(IB & !C))
E) /14& (!IB&!C)
F) /(A& (IB&!C))

2
Answer: /-,

Answer:

o’

A

= N
2 1)
| g

3. Three Times the Fun (8 points): Consider the following C functions:

int funl(int a, int b)

{
if (a < b)
return a;
else
return b;
}
int fun2(int a, int b)
{
if (b < a)
return b;
else
return aj;
}
int fun3(int a, int b)
{
unsigned ua = (unsigned) a;
if (ua < b)
return b;
else
return ua;
}

Which of the functions would compile into the assembly code shown here?

.L9:

Answer: Fun % (1,2, 0r3)

pushl %ebp
movl %esp, $ebp

movl 8 (%ebp),%edx O A ~-l> O
movl 12 (%ebp), %eax i, N
cmpl %eax, ¥edx o |- A=k
jge .L9 s
movl %edx, $eax ¢ AL
movl %ebp, %esp i3) (7 . N\
- LAWY VA v i . £ - \
popl %ebp I T lu2xhy)
ret . X 1
Sl Hale
3 lﬂ;-,
\ TG,
LAl
Y’ v 1
ris Af S L
1S /Y)
AN ”" L\] ..

Nl

4. Bit Off More Than You Can Chew? (12 points): Consider the 8-bit value 10110010. For the following
different interpretations, provide the decimal equivalent of this 8-bit value. Assume that the word size

of the machine interpreting this value is 8§ bits — and in fact, all declared types only occupy 8 bits of
space.

a. An 8-bit signed integer
b. An 8-bit unsigned integer

c. An 8-bit floating point value. It follows the IEEE format for encoding: assume that the sign
takes 1 bit, the exponent takes 4 bits, and the fraction takes 3 bits.

s ~ = - / N U e)i -
- |) AX .) -— "o D | U -
1 SR!) <O P { v
i1 N F a

-
<

5. Let Me EAX Another Question (10 points): Consider the following code fragment:

movl S$0x4, %edx
movl S0x0, %eax
movl S0x2, %ebx
start: cmpl SO0xC, %eax
je end
addl %edx, %eax
imull %ebx, %eax
j start
end: nop

What is the value of %eax at the time that the nop is executed?

-~ e S AT

6. Vexing Hexing (15 points): You are examining a memory dump (in hexadecimal) from a 32-bit (i.e.
pointers use 32 bits), little-endian architecture for memory addresses from 0x400500 to 0x4005DF .
Somewhere in this memory space there are five elements of a linked list — each element of the list has
three fields: a char tag, a pointer to a 32-bit float, and a pointer to the next element of the list. You
know that the first element of the linked list is located at address 0x40051C. Find the element that
contains the tag ‘B’ and provide the 32-bit float value to which that node refers. Note — we want you to
interpret the IEEE format of the float to tell us what number it actually represents.

0x400500

41102413

42DBE(044

E7B56423

0411460A

0x400510

24915123

AAF41591

91F05420

1468C0540

0x400520

00740540

Q855CDDF

721980540

00000000

0x400530

00243F50

04512242

42820041

18210041

0x400540

42AA431D

FOOD4E41

FEEDBEEF

24971021

0x400550

004005A0

42700540

EACFEAE?2

00000000

0x400560

2465E24D

60210720

F423E8D9

1BABE4FE

0x400570

86A4B000

142900540

00RA40540

00EC2342

0x400580

2458C931

8542C176

AFE543DD

91412124

0x400590

FF800000)

66124455

55442166

2254E243

0x4005A0

DEFEC8ED

145940540

00280540

00L4DESF

0x4005B0

4121E890

01234567

24890ABC

DEF64322

0x4005C0

42400580

7013225A

1BADBEAD

EBB9O0042

0x4005D0

49880540

001C0540

00000000

24400530

The address (in hex) of the linked list element that contains the tag ‘B>: [T Cet 74
L1

The float contained inside that element ;7. & 5xi 0

[\ () &l) » -
» i LU e ~)/ Lo \J
= (VA AC ’

. I Cannot Function in this Environment (15 points):

call_func: func:

oo ### SETUP ###

PREP #i## movl 8(%ebp) ,%esi

call func movl 12 (%ebp), %edx

oo leal (%esi,%edx,4), %esi
push %esi
call foo
FINISH
ret

The two code fragments above show an example of a caller and callee — function call_func will call
function func. Note that there are three sections with ##’s: PREP, SETUP, and FINISH. This problem
will involve you putting the correct code in these sections. You may assume that function foo modifies
only register %eax — it takes one parameter. Note that the value returned by foo is the value we want to
return by func. The function func takes two parameters (argl and arg2 — in that order), which are
currently located in %ebx (argl) and %edi (arg2). Before the call to furnc, all registers have values that
we will need after the call has completed. This code is targeted for ia32 (i.e. a 32-bit x86 architecture).
Your code should be efficient — every instruction you add should have a useful purpose (you may ignore
cache alignment and memory performance for now), even if it has no effect on the system.

a. Preparing for the call to func — what code (if any) needs to be placed where the ### PREP ###
placeholder is located? You should supply the minimum code required to satisfy the procedure
call convention (i.e. stack discipline) and the specific requirements above.

] o \

J0\X
i

b. Setup code for func — what code (if any) needs to be placed where the ### SETUP ###
placeholder is located? You should supply the minimum code required to satisfy the procedure
call convention (i.e. stack discipline) and the specific requirements above.

/n D00

c. Finishing the call to func — what code (if any) needs to be placed where the ### FINISH ###
placeholder is located? You should supply the minimum code required to satisfy the procedure
call convention (i.e. stack discipline) and the specific requirements above.

&% olon) Y 04y

8. Flipping Through Your Notes? (8 points): Answer the following questions with 3 words or less to
name what is being described.

a. An ISA that typically has many different variable length instructions, usually allowing them to
access memory directly rather than via explicit data movement instructions.

CISC

b. An effective technique for handling switch statements in C code when the case statements are
small integer constants.

c. The 32-bit register in 1a32 that holds values returned by procedures.
\«/v ; (4 y/

d. Floating point values that are very close to 0.

» ¥ i .
™\ h]] { a , »
AN AN VYL 7 Vit VLA Lin W\E
IZAR AN v wxi”j":ﬁ. Vil lin ¢ [

9. Power Two, you People (12 points): Just like Lab #1, your task here is to use Your assignment is to
complete a function skeleton using only straightline code (i.e., no loops or conditionals) and a limited
number of C arithmetic and logical operators. Specifically in this problem, you are only allowed to use
the following seven operators:

! ~ & " | + << >>
Also, you are not allowed to use any constants longer than 8 bits.

/*
* isPower2 - returns 1 if x is a power of 2, and 0 otherwise

* Examples: isPower2(5) = 0, isPower2(8) = 1, isPower2(0) =0
* Note that no negative number is a power of 2.

* Legalops: ! ~& " |+<<>>

* Max ops: 60

* Rating: 4

*/

int isPower2(int x) {
A r resalt L

J7 (ouny fve K\A\M‘: i L{”;l)
o L 4 s wa
/If 2V w C})W,J‘A"j 2

mY b\‘tu.’w\‘)
Wt mlz oxlf | (C""‘LU‘”)

wr sk = ml | Ll LLU/)
wmb S=\ & ﬂf‘(’?i/'

S = »<>7L$<V"%V
S>> %772 onm;é(

61> x3775% &W%M]
W bmbivg Wigh gu) lower i S S
} S= S % *\777{‘-') ,
/! Low ©fd W']\/io l‘; now (Ov 71‘—*7 C% 4 “mw» secl '3"“/“\) sz'g"w'li’w‘f C aung
(¥ \, \/
//’;ﬁ!;a, (Ve Awo i)v"»‘fﬁiﬁ ard Suwm
maske = OXF | (0xF &9
5= (5 % mevk) ¥ (5974 4) & ""‘*”’)
C ok = (5 + (5574)) & OX3HY
V4 1: ?r,f’;s,z,-";s*w* \s l :5 Yoo ne b T me n,“fb‘m X 5 a !?Gu”.«"‘ oY

(‘Q‘?f;xz)hl': !“\LN\Q‘;xvhﬂL 1Y) & & Lx 77 3 ’/

fwan yewly)

