| §

J It’s Gettin’ Hot On-Chip (So Hot) — So Parallelize All Your Code J3 (10 points): Answer each
multiple choice question.

a. The recent shift away from aggressive frequency scaling and towards multicore processors
resulted primarily because

A) There was insufficient silicon area (i.e. # of transistors) to implement the more complex
cores that were being proposed

B) DRAM capacity was not scaling sufficiently compared with transistor speeds
More complex cores with faster clock rates burned too much power for conventional
packaging and cooling technology

D) We started to run out of three-letter acronyms

b. Without frequency scaling, we have to continue to scale
performance. Parallel programming has become more mainstream as a result.
@ Focused on the exploitation of thread-level parallelism (TLP)
B) Instead implemented faster clock rates
C) Designed larger L1 instruction and data caches
D) Completely given up trying

c. One challenge in certain types of parallel programming is load balancing among different
threads. This refers to

A) Evenly distributing memory accesses (i.e. load instructions) among different cores to
balance the data stored in the first level caches.

@ Evenly distributing the amount of work done by each thread to ensure maximal speedup
from parallelization.

C) Evenly spreading heat across the chip to avoid race conditions from hot/cold regions of
the processor.

D) Evenly dividing programmer time between writing code and killing time on Facebook.

d. If you have a parallel architecture where there is a single control flow that is executed by all
compute elements but each element is working on different data, then you are following the
model of parallel architectures.
SIMD
;) MISD
C) MIMD
D) Super

e. Simultaneous Multithreading (SMT) (also known as Hyperthreading) is a technique intended to:

A) Reduce application latency by issuing from multiple threads within a single cycle at the
possible cost of throughput

@) Improve overall throughput by issuing from multiple threads within a single cycle at the
possible cost of single thread performance

C) Reduce core heating (i.e. utilization) by issuing from multiple threads within a single
cycle at the possible cost of performance

D) Confuse students with long and important sounding names.

2. You Won’t Be Able to Make Heads or Tails of This One (20 points): Consider the following C
structure definition:

struct node {
short id;
char *label;
float velocity;
char x;
char y;
char z;
struct node *next;
struct node *prev;

|

struct node * head;
struct node * tail;

This code is compiled on a 64-bit, little-endian architecture (x86-64 running Linux). You use gdb to
find some information:

{gdb) x/128x 0x601010

0x601010: 0x00004567 0x00000000 0x00400768 0x00000000
0x601020: 0x4ee961b% 0x007369c6 0x00000000 0x00000000
0%601030: 0x006010c0 0x00000000 0x00000021 0x00000000
0x601040: 0x2aeB8944a 0x00000000 0x00000000 0x00000000
0x601050: 0x00000000 0x00000000 0x00000021 0x00000000
0%601060: 0x625558ec 0x00000000 0x00000000 0x00000000
0%601070: 0x00000000 0x00000000 0x00000021 0x00000000
0x601080: 0x238e1£29 0x00000000 0x00000000 0x00000000
0x601090: 0x00000000 0x00000000 0x00000021 0x00000000
0x6010a0: 0x46e87ccd 0x00000000 0x00000000 0x00000000
0x6010b0: 0x00000000 0x00000000 0x00000031 0x00000000
0x6010c0: 0x000058ba 0x00000000 &[0x0040076e] 0x00000000
0x6010d0: Oxdef3c554 0x00fbf2ab 0x00601010 0x00000000
0x6010e0: 0x00601150 0x00000000 0x00000021 0x00000000
0x6010£0: 0x515£007¢ 0x00000000 0x00000000 0x00000000
0x601100: 0x00000000 0x00000000 0x00000021 0x00000000
0x601110: 0x5bd062c2 0x00000000 0x00000000 0x00000000
0x601120: 0x00000000 0x00000000 0x00000021 0x00000000
0x601130: 0x12200854 0x00000000 0x00000000 0x00000000
0x601140: 0x00000000 0x00000000 0x00000031 0x00000000
0x601150: 0x000027£8 0x00000000 0x00400774 0x00000000
0x601160: Ox4ecdde8? 0x00e7e81b 0x006010¢c0 0x00000000
0x601170: 0x006011e0 0x00000000 0x00000021 0x00000000
0x601180: 0x%3352255a 0x00000000 0x00000000 0x00000000
0x601190: 0x00000000 0x00000000 0x00000021 0x00000000
0x6011a0: 0x109cf92e 0x00000000 0x00000000 0x00000000
0x6011b0: 0x00000000 0%00000000 0x00000021 0x00000000
0x6011c0: 0x0ded7263 0x00000000 0x00000000 0x00000000
0x6011d0: 0x00000000 0x00000000 0x00000031 0x00000000
0x6011e0: 0x0000c233 0x00000000 0x0040077a 0x00000000
0x6011£0: Oxde9cd5£7 0x009ac99f 0x00601150 0%00000000
0x601200: 0x00000000 0x00000000 0x00000021 0x00000000

{gdb} print head

31 = (struct node *)

(gdb) print tail
$2 = (struct node *) 0x601010

(gdb) x/32x 0x400768

0x400768:
0x400778:
0x400788:
0x400798:
0x4007a8:
0x4007b8:
0x4007cB:
0x4007d8:

0x65626d61

0x7a610065]

0x00000003
0x00000078
0x00000014
0x08070c03
0x004004d8
0x00000006

0x6011le0

Ox636£0072
0x00657275
Oxfffffd58
Oxf£££££00
0x00000000
0x00000190
0x00000190
0x00000000

0x00657268
0x3b031b01
0x00000040
0x00000090
0x00527a01
0x0000001c
0x100e4100
0x00000014

Ox7675616d

0x00000024
OxfffffefQ
0x00000000
0x01107801
0x0000001c
0x0d430286
0x00000000

Based on this information, fill in the correct response for these two gdb queries:

(gdb) print head->next->label

“mauve”

(gdb) print &(tail->prev->label)

0x6010c8

3. A Stack Walks into a Bar and Says “It’s Hard to Maintain Discipline While Getting Smashed” (20
points): Consider the following C datatype, intended to provide some protection against buffer
overflow:

struct safe buffer |
int size;
char * buffer;

} mybuf;

And the following function that creates a safe buffer:

void createbuf (struct safe_buffer *buf, int size) |
int i;
char tempbuf([l12]:
(*buf) .size=size;
(*buf) .puffer=calloc((*buf).size, sizeof(char)):
gets (tempbuf);
for (i=0; i<size; 1++)
(*buf) .buffer[i]=tempbuf[i];
return;

}

Your friend argues that this function takes a size parameter and allocates that much buffer space — then
only writes that much space to the buffer, ensuring that the safe buffer cannot overflow. Your friend is
completely wrong. Prove that the code can be exploited — give us a string (plain text) that could be used
to form an exploit string as you did in the buffer lab. You exploit string should maintain the correct
value of the saved ebp on the stack, but should change the saved return address to 0x080485e8 so that
the return from createbuf will take us to that address. Don’t worry about the call to sendstring — just
give us plain text. Here’s some useful data from execution on IA32 Linux — the disassembled eall to
createbuf:

B8048512: eB e2 fe ff ff call 80483f9 <createbuf>

And the values of %esp and %ebp, and a gdb dump of some of the stack, after the call to gets in
createbuf has completed and we are inside the for loop in createbuf:

esp Oxffffdb40

ebp Oxffffdb58

(gdb) x/32x Oxffffdbd0

Oxffffdb40: Oxffffdbd8 0x00000001 0x74617257 0x00000068
Oxff££db50: 0x00000000 0x00000000 Oxffffdbc8 0x08048517
Oxffffdb60: 0x08048720 0x0000000a 0x00000000 0x00000000
Oxfff£db70: Oxf63ddeze 0x00000000 0x00000000 0x00000000
OxffffdbB0O: 0x00000000 0x00000000 0x00000000 0x08048340
Oxffffdb90: 0x00000000 0x0B80496£4 OxffffdbaB 0x080482al
Oxffffdbal: 0x00299ff4 0x00298204 Oxffffdbds 0x08048569
Oxffffdbb0: 0x00183e25 Oxffffdcée Oxffffdbd8 0x00299ff4

00 00 00 00O 00 00 00 OO0 OO0 00 OO 00 OO0 OO Q0 OO0 c8 db ff ff eB8 B85 04 08

4. I CUDA BIN Somebody — I CUDA BIN A Contender! (20 points): Consider the CUDA code below:

#include <stdio.h>
__global _ void kernel(int *a)
{
int idx = blockIdx.x*blockDim.x + threadIdx.x:;

a[idx] += threadldx.x;

}

int main()
{
int dimx = 8;
int num_bytes = dimx*sizeof(int);
int *d_a=0, *h_a=0; // device and host pointers
dim3 grid, block;
int i;

h_a = (int*)malloc(num bytes);

cudaMalloc((void**)&d_a, num bytes);

if(O==h_a || O==d_a)

{
printf ("couldn't allocate memory\n");
return 1;

}

h_a[0]=1;
for (i=1; i<dimx; i++)
h_alil=h_a[i-1]*2;
block.x = 4;
grid.x = dimx / block.x; g
cudaMemecpy(d_a, h_a, num_bytes, cudaMemcpyHostToDevice);
kernel<<<grid, block>>>(d_a);
cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);
for(int i=0; i<dimx; i++)
printf("%d ", h_a[i]):
printf("\n");
free(h_a };
cudaFree(d a);
return 0;

}

What is the output of this code when executed on a system with a CUDA-enhanced GPU?

1l 3611 16 33 66 131

5. Cache Me If You Can! (30 points): Consider the following C function.

void shrink(int *old, int *new, int dim_new, int shrink_factor) {
int iy j:
int u, wv;

for (i=0; i<dim _new; i++) {
for (j=0; j<dim new; j++) {
new[i*dim new+j]=0;
for (u=0; u<shrink factor; u++) {
for (v=0; v<shrinkﬁfactor; v+t+) |
new[i*dim new+j]+=
old[(i*shrink_factor+u) *dim_new*shrink_ factor
+(j*shrink_factor+v)];
}
}
new[i*dim_new+]j)/=shrink_factor*shrink factor:
}

}

This function effectively takes a 2D matrix (int *old) and outputs a new 2D matrix based on this
called (int *new). The parameter dim new defines the size of the new 2D matrix — it is effectively
amatrix of (dim_new * dim_new) integers. The last parameter, shrink_ factor, is how many
times smaller one dimension of the new matrix is relative to the old matrix. So if we went from a
400x400 matrix to a 100x100 matrix, dim_new would be 100 and shrink_factor would be 4.
This could be used for something like image scaling. The technique to shrink the matrix will basically
just use a simple, non-overlapping average — probably not good enough for high quality image scaling,
but we’ll do the best we can with it.

This problem is intended to be the most challenging one on this exam — so before continuing be sure you
understand the original code first — it may be useful to run through an example of the shrinking on a
small matrix — like a 4x4 matrix shrinking to a 2x2 matrix (scaling factor is 2).

We want to optimize this code by using strength reduction and common subexpression elimination on as
many multiplies as possible, by eliminating unneeded memory references, and by using blocking to
improve locality in the loop structure. There are lots of ways to attack this, but we are going to force
you to finish the one we have started on the next page (this one cuts the runtime of shrink in half). The
author of this code segment has followed a horrible coding practice of naming some of their variable
names in a completely irrelevant way to the code function — so you cannot rely on the variable names to
help you discern their functionality.

Your job is to fill in the blanks to make this code work correctly. The blanks we have inserted will look
like this: A where the letter at the center of the blank is the label for the space on the
answer key. So you should have 10 labels (A-E) to fill in for this problem. MIN(X,Y) is a macro that
returns the minimum of values X and Y.

void shrink fast(int *old, int *new, int dim _new, int shrink factor)
{

int 1y 3

int u, v

int iidim,j3j,ii:

// HINT - all labels should be filled with one of these names
int platypus, kangaroo, echidna, cassowary, koala, dingo, wallaby,
wombat;

int dimshrink, sf2, sf2dim,bdim;

dimshrink=dim new*shrink_factor;
sf2=shrink_factor*shrink_factor;
sf2dim=sf2*dim new;
bdim=BSIZE*dim_new;

iidim=0;
for (ii=0; ii<dim_new; ii+=BSIZE) ({
for (jj=0; ji<dim_new; jj+=BSIZE) {
wallaby=MIN(11+BSIZE,dim new);
wombat=iidim;
platypus=iidim*sf2;
cassowary=JjJj*shrink_ factor;
for (i = ii; i < wallaby ; i++4)({
kangaroo=__platypus +sf2dim;
dingo=MIN(jj+BSIZE,dim_new);
echidna=cassowary;
for (j = jj:s j < dingo ; j++){
koala=0;
for (u=platypus; u<kangaroo; u+=dimshrink) ({
for (v=echidna; v<echidna+shrink_factor; v++) ({
koala +=0ld [u+v];

}
}
new[wombat +j]=koala/sf2;
echidna+=shrink_factor;

}
wombat+=dim_new;
platypus+=sf2dim;
}
}
iidim+=bdim;

