

Problem 1

Problem 2

Problem 3

Problem 4.

Problem 5.

Problem 6.

Problem 7.

 Short answers.

Problem 8.

Problem 9.

a. First, deduce the following functions.

000000000000064a <func1>:

 64a: 48 83 ec 18 sub $0x18,%rsp

 64e: 89 7c 24 0c mov %edi,0xc(%rsp)

 652: 83 7c 24 0c 00 cmpl $0x0,0xc(%rsp)

 657: 75 07 jne 660 <func1+0x16>

 659: b8 01 00 00 00 mov $0x1,%eax

 65e: eb 0e jmp 66e <func1+0x24>

 660: 8b 44 24 0c mov 0xc(%rsp),%eax

 664: 83 e8 01 sub $0x1,%eax

 667: 89 c7 mov %eax,%edi

 669: e8 05 00 00 00 callq 673 <func2>

 66e: 48 83 c4 18 add $0x18,%rsp

 672: c3 retq

0000000000000673 <func2>:

 673: 48 83 ec 18 sub $0x18,%rsp

 677: 89 7c 24 0c mov %edi,0xc(%rsp)

 67b: 83 7c 24 0c 00 cmpl $0x0,0xc(%rsp)

 680: 75 07 jne 689 <func2+0x16>

 682: b8 00 00 00 00 mov $0x0,%eax

 687: eb 0e jmp 697 <func2+0x24>

 689: 8b 44 24 0c mov 0xc(%rsp),%eax

 68d: 83 e8 01 sub $0x1,%eax

 690: 89 c7 mov %eax,%edi

 692: e8 b3 ff ff ff callq 64a <func1>

 697: 48 83 c4 18 add $0x18,%rsp

 69b: c3 retq

int func1(unsigned int n)
{

 if (_______)

 ____________;

 else

 ____________;

}

int func2(unsigned int n)
{

 if (_______)

 ____________;

 else

 ____________;

}

b) Suppose we call func1(4), what is the return value?

c) Consider the case where func1(2) is called: Draw the stack at the point in the program execution

when the stack is largest. To get full credit, you must show where the stack pointer is pointing, and

indicate the names/locations of any unknown registers pushed to stack, any known values pushed to the

stack, and any unused stack space.

Assume each line of the table represents 4 bytes.

caller return address <7-4>

caller return address <3-0>

Problem 10.

Solve the final bomb_lab phase:

1. What string will defuse the bomb?

2. What string will activate the secret phase?

Problem 11.

The Midterm

Problem 1

prints nothing.

- x > (signed short) y
 - signed short is converted to unsigned long for this comparison
 - so it is false
- x > z
 - is also false because nothing is greater than unsigned -1

Problem 2

subq %rax, (%rbx)

- because the parentheses indicate a memory reference

Problem 3

!(x & 0x1f)

- x & 0x1f says "only let the last five bits through the gate"
- !() of that says 1 if those five bits are 00000, 0 if anything else
- that's equivalent to divisibility by 32

Problem 4

0xdeadbeefdeadd0c8

- because pushq pushes a 64-bit (8 byte) word onto the stack
- so it decrements %rsp by 0x8

Problem 5

movl (%ecx, %ebx, 4), %eax

- array[3] is indeed located at %ecx + 4 * %ebx

Problem 6

-15, 241

- y is 0xF1, z is also 0xF1
- y is signed char, so it is -15
- z is unsigned char, so it is 241

Problem 7

a. sizeof(B) = 24

- because in `int (*B[3])[5]`, `B` is an array of 3 pointers to [arrays of 5 ints]

b. sizeof(A) = 120

- because in `int (*A[3][5])`, `A`is a 3 by 5 array of pointers to ints

c. sizeof(C) = 8

- because in `int (*C)[3][5]`, `C` is a pointer to a 3 by 5 array of ints

Problem 8

one's complement of `a`: `a ^ (MIN_INT + MAX_INT)`

- because `a ^ (MIN_INT + MAX_INT) = a ^ -1 = ~a`
- one's complement is basically "flip the bits"

`a`: `((a ^ b) & ~b) | (~(a ^ b) & b)`

- because `(c & ~b) | (~c & b) = c ^ b`
- you can see that because XOR is basically "the first and not the second, or the second and not
the first"
- then let `c = a ^ b`
- and `((a ^ b) & ~b) | (~(a ^ b) & b) = (a ^ b) ^ b = a`

`a & b`: `~(~a | (b ^ (MIN_INT + MAX_INT)))`

- because that's `~(~a | ~b)` because of the above
- and that's `a & b` by deMorgan

`a * 7`: `1 + (a << 3) + ~a`

- because `(a << 3) = a * 8`
- and `1 + ~a = -a`

`a / 4`: `((a < 0) ? (a + 3) : a) >> 2`

- because `/` always rounds toward 0 while `>>` always rounds toward `-inf` so you have to add
a bias

`(a < 0) ? 1 : -1`: `~((a >> W) << 1)`

- because if `a < 0`, then `(a >> W)` is -1, `<< 1` is -2, and `~` is 1
- and if `a >= 0`, then `(a >> W)` is 0, `<< 1` is 0, and `~` is -1

Problem 9

(a)

```c 
int func1(unsigned int n) { 
  if ( n == 0 ) // mov %edi, 0xc(%rsp); cmpl $0x0, 0xc(%rsp); jne 660 
    return 1; // mov $0x1, %eax 
  else 
    return func2 ( n - 1 ); // sub $0x1, %eax; mov %eax, %edi; callq 673 
} 
 
int func2(unsigned int n) { 
  if ( n == 0 ) // mov %edi, 0xc(%rsp); cmpl $0x0, 0xc(%rsp); jne 689 
    return 0; // mov $0x0, %eax 
  else 
    return func1 ( n - 1 ); // sub $0x1, %eax; mov %eax, %edi; callq 64a 
} 
``` 

(b)

``` 
func1(4) = func2(3) = func1(2) = func2(1) = func1(0) = 1 
``` 

(c)

``` 
caller return address bytes 7 to 4 
caller return address bytes 3 to 0 
... 
... 



0x00 00 00 02 
... 
... 
... 
0x00 00 00 00 
0x00 00 06 6e // return address of stack frame for func1(2) 
... 
... 
0x00 00 00 01 
... 
... 
... 
0x00 00 00 00 
0x00 00 06 97 // return address of stack frame for func2(1) 
... 
... 
0x00 00 00 00 
... 
... 
... 
``` 

Problem 10

It's a maze!

So

`%rdi` contains the address of your input string

`%rsi` contains your `y` position

`%rcx` contains your `x` position

`%rdx` becomes the address you calculate for your position: `%rdi + 8*%rsi + %rcx`

You start in `(1, 1)` counting from the top left, zero-based

`a` is left, `d` is right, `s` is down, `w` is up

You're trying to get to `0x03` to finish the phase, or `0x21` to activate the secret phase

Defuse the bomb: `sdsdd`

Activate the secret phase: `sdssassdssddddw` (you have to go out of the `map`, through the
`0xfe`, into the `unimportant_array` near the end of that path)

Problem 11

switch statement :)

```c 
long test(long a, long b, long c) { 
  long answer = 5; 
  switch(a) { 
    case 5: 
      c = b ^ 0xf; // or 15 
    case 0: // or 7 
    case 7: // or 0 
      answer = c + 112;  
      break; 
    case 2: // or 4 
      answer = (c + b) << 2; // or 12 
      break; 
    case 4: // or 2 
      answer = 12; // or (c + b) << 2 
      break; 
    default: 
      answer = 5; 
  } 
} 
``` 


