UCLA Computer Science 33 (Spring 2015)

Midterm

108 minutes total, open book, open notes
Questions are equally weighted (12 minutes each)

Name : Student ID: -
L e e T e e e
1 |2 |3 |4 [5 |6 |7 | 8 |9 | sum
| | | | | I | | I
| | I | | I | | I
L e e T e e e

1. Suppose you want a thread Tl to wait until
thread T2 finishes, and that T2 is detached.
Explain how to arrange for this reliably,
assuming the threads cooperate by executing code
that you specify. Your code may invoke any of
the pthread * or sem * primitives discussed in
the book or in class. Explain any assumptions
you make and any race conditions that you
couldn't fix (these should be reasonable and
few) .

NOTE: This question deals with the topic of synchronization, which
you (the Fall ‘15 CS 33 class) will not be tested on in your midterm.

Thread Tl should not execute until T2 is complete. T2 is a detached
thread, which means you can’t use pthread join(tid2,..) and must use
a semaphore. Assume that Tl will run the code specified by threadl
and T2 will run the code specified by thread2.

int main() {

sem init (&mutex, 0, 0); // Initialize sem value to 0

}
void* threadl (void* arg) {

sem wait (&mutex) ; // Tl does P(s) before executing
code

<CODE FOR T1>

void* thread2 (void* arg) {
<CODE FOR T2>
sem post (&mutex) ; // T2 does V(s) after executing code

If we initialize the semaphore “mutex” to be 0, then the code in
threadl will wait with the sem wait function until the mutex is
incremented. The mutex is only incremented by T2 which will execute
its code and then call sem post once it is ready to exit. Note:
technically, there is no guarantee that Tl will wait until T2 has
properly finished because this configuration will allow Tl to execute
as soon as T2 calls sem post. As a result, the scheduler could allow
Tl to execute immediately after T2 calls sem post but before T2
actually exits the thread2 function.

2. Suppose we extend the bitwise operations 7,

&, | and ~ to operate on floating-point values by
applying these bitwise operations to their
representations. For example, since the binary
representation of 0.1f is 0Ox3dccccced, and
~0x3dcccced == 0xc2333332, and 0xc2333332
represents -44.799995f, then ~0.1f would yield
-44.799995f and ~-44.799995f would yield 0.1f.
Recall that the general rule for floating point
operations is that NaNs are infectious, i.e.,
that if one or both inputs to a floating-point
operation is a NaN, then the operation yields a
NaN. Which (if any) of the bitwise operations *,
&, | and ~ are infectious on NaNs? Explain.

OR is the only infectious bitwise operator. NaNs are identified by an
exponent field that is all 1s and a non-zero fractional field. Thus,
we are looking for a bitwise operation that will, with certainty,
result in an exponent field of all 1ls and a non-zero fractional
field. With |, if either of the operands is a NaN, the resulting
value must be a NaN because anything OR’d with a 1 is a 1. Any of the
other operations can or must yield non-NaN values when applied to a
NaN. For example: <bitwise ~>NaN will result in an all 0 fractional
field, NaN <bitwise "> OxFFF...FF has the same effect as <bitwise
~>NaN, NaN <bitwise &> 0 = 0.

3. The function stricmp (A, B) compares the two

strings A and B ignoring case, and returns an

int. If we let a = the lowercased version of A
and b = the lowercased version of B, then
stricmp (A, B) returns a negative number if a
compares less than b, a positive number if a
compares greater than b, and zero otherwise.
This function compares strings byte by byte, and
assumes only the 52 ASCII letters.

Consider the following stricmp implementation.
Assume that it's running on the x86.

#include <string.h>

#define min(a, b) ((a) < (b) ? (a) : (b))

char
cvtlower (char c)
{
if ('A' <= c && c <= 'Z2")
return ¢ - 'A' + 'a';

return c;

int
stricmp (char const *a, char const *Db)
{
for (size t i = 0;
i < min(strlen(a), strlen(b));
i++)
if (cvtlower(a[i]) < cvtlower (b[i]))
return -1;
else 1f (cvtlower(a[i]l) > cvtlower(b[i]))
return 1;
return O;

Propose two optimizations of this code, at least
one of which is likely to improve performance
greatly and the other at least somewhat. Explain
why the former is likely to be better than the
latter.

Significant Improvement:

Hoist out strlen(a) - This can be done either by doing:

int min = min(strlen(a), strlen(b));
for (size t i = 0; 1 < min; i++)

..or frankly even:
int len a = strlen(a);

strlen (b)) ;
for (size t i = 0; i < min(len a, len b); 1i++)

int len b

The reason that this provides such a considerable improvement is
because strlen will perform n operations where n is the length of the
string. Thus, for each iteration of the loop (say there are m
iterations), we are performing two strlens. This means the function
is doing 2*n*m operations as a result of the strlen. When strlen is
hoisted out, the function only does 2*n operations as a result of the
strlen.

Minor Improvement:

Reduce the number of calls to cvtlower - This can be done as follows:
for (size t i = 0; i < min(strlen(a), strlen(b)); i++)
{

char lower a = cvtlower(ali]);

char lower b = cvtlower(b[i]);

if (lower a < lower b))
return -1;

else if (lower a > lower b)
return 1;

Previously, each loop was performing 4 calls to cvtlower (), which is
an O(1l) function. This means cvtlower was contributing a total of 4*m
operations. Now, it only performs 2 calls per iteration for a total
of 2*m operations. Loop unrolling could also have also provided a
minor decrease in the number of loop overhead operations.

4. Consider the following C function and its
translation to x86-64 assembly language. The C
function returns afli] in the typical case where 1
is in range, and returns 0 otherwise:

int
subscript (int *a, unsigned i,

unsigned int n)

if (0 <= 1 && 1 < n)
return af[i];

return 0;

subscript:

xorl %eax, %eax

cmpl %edx, %esi

jnb L2

movl $%$esi, %esi

movl (%rdi,%rsi,4), %eax
L2

ret

4a. How can this code be correct? The source has
two comparisons, but the assembler has just one.

The comparison of 0 <= 1 is unnecessary and will be optimized out
since i is unsigned which means this condition will always be true.

4b. Why aren't conditional moves helpful for

improving this code's performance? Explain.

The typical case for subscript is that the index is within the
bounds. In this code snippet, dynamic branch prediction will
generally predict that the branch will not be taken and as a result,
it will speculatively perform the instructions for returning afli].
Assuming a typical access pattern for arrays, this prediction will be
successful most of the time, so conditional moves won’t improve much.

5. Suppose your program has three parts that are
done in sequence and take 0.5, 0.3, and 0.2 of
the time respectively. You can parallelize the
first part and speed it up by a factor of 2. Or
you can parallelize the second part and speed it
up by a factor of 8. Use Amdahl's law to
calculate which of these two will give you better
performance and why. Suppose you can do both

parallelizations: how much will your performance
improve compared to the original, or to either
parallelization alone? Show your work.
Original:

TO = 0.5 + 0.3 + 0.2

Parallelize the first part by a factor of 2:

Tl = 0.5/2 + 0.3 + 0.2 = 0.75

Parallelize the second part by a factor of 8:

T2 = 0.5 + 0.3/8 + 0.2 = 0.5 + 0.0375 + 0.2 = 0.7375
Parallelize both parts:

T3 = 0.5/2 + 0.3/8 + 0.2 = 0.4875

T3 < T2 < T1

6. Let d = the number 0.1 in C (i.e., the

'double' value 0.1). Let £ = the number 0.1f in
C (i.e., the '"float' value 0.1f). And let r =
the number 0.1 in mathematics (i.e., the real
number equal to 1 divided by 10). Recall that
the binary representation of r is the repeating
sequence 0.000110011001100110011... base 2. Sort

the values d, f, and r into nondescending order.
If two or more of these three values are equal,
say so. Assume x86-64 arithmetic with default
rounding. Show your work.

The key observation is that r is infinitely repeating while f and d
must terminate. Because of this, we will not be able to represent
1/10 precisely with a single or double precision floating point. As a
result, f and d may be rounded up (to be greater than 1/10) or
rounded down (to be less than 1/10). In order to see which way it
rounds, we need to examine the binary.

r = .000110011001100...

The greatest power of 2 in this number is 27-4. An exponent of that
range will required normalized representation in both float and
double form. Because the fractional contribution of normalized form
includes an implicit 1, we have to rewrite the binary to be of this
form:

f/d 2°=4 * (1 + ...)
f/d = 2~-4 * 1.frac
frac = 100110011001... (or sequence of 1001ls repeated)

There are 23 fractional bits in a float. This means that the sequence
of repeated 1001s will truncate with the third (23 % 4 = 3) digit of
1001 (or 100]1). There are 52 fractional bits in double. This means
that the sequence ends in the last digit of the sequence. Thus (the
vertical bar represents the cutoff):

float: frac = 10011001...10011001]110011001...
10011001...1001100 110011001...10011001110011001

double: frac

The default rounding mode is "round-to-even", which actually rounds
to the closest value and rounds to even only to break a tie (when the
actual value is exactly in the middle of two representable numbers).
In order to determine if there is a tie, consider the bits to the
right of the cutoff. If the bit immediately to the right is 1 and the
rest of the bits are 0, then there is a tie. However in this
instance, because the bit immediately to the right is 1 AND there are
repeated 1ls beyond that, both values are actually closer to the
rounded-up value. Thus, the actual values will be:

float: frac = 10011001...1001101
double: frac = 10011001...10011001...10011010
real: frac = 10011001...10011001...100110011001...

As a result, both f and d are greater than r. However, f rounds up at
a much greater position than the double because the floating point
has less precision:

float: 10011001...100110100000...
doub: 10011001...100110011001...

As a result, the ascending order is r,d,f or what is known in the
industry as "The Reverse Franklin Delano Roosevelt".

7. We have a special kind of SRAM cache called
Cache Z. Cache Z uses a write-back approach, but
omits the dirty bit. 1Instead, whenever it needs
to know whether a cache line is dirty, it loads
the corresponding data from RAM and compares it
to the data in the cache line: if they compare
equal, Cache Z acts as if the dirty bit were
zero, and 1f they compare nonequal, Cache Z acts
as if the dirty bit were nonzero. Compare the
pros and cons of Cache Z to an ordinary
write-back write-allocate cache. Propose an
improvement to Cache Z's performance that does
not involve adding a dirty bit.

According to Cache Z’s policy, each time a block must be evicted, you
need to go to memory to read the corresponding block. Then, you
compare the value of the block in the cache to the value that was
fetched from memory. If the values are different, you write the
updated block to memory. This means that for each eviction, you MUST
read from memory and you might have to write back to memory.

Pros of Cache Z:
- Unlike in a traditional write-back cache, you do not need to
store the dirty bit. You save a single bit per block

Cons of Cache Z:
- Each eviction costs at least a memory access and requires 2
memory accesses 1f the block is dirty. A traditional write back
cache will only require 1 memory access 1f the block is dirty.

Improvement:

- When evicting, simply write the block in cache back to memory
without doing an additional check.

- Consider a case where there are n evictions and n/2 of those
evictions need to be written back to memory. In Cache 7, this
will require 1.5*n memory accesses.

- With this improvement, n memory accesses are necessary, which
means that it will always perform at least as well as Cache Z

which will require between n and 2n memory accesses.

8. Suppose you have an x86-64 machine with the
following characteristics:

two sockets

12 CPU cores per socket

L1l instruction cache: 32 KiB per core
L1l data cache: 32 KiB per core

L2 cache: 256 KiB per core

L3 cache: 30 MiB per socket

64 GiB DRAM per socket

L1l and L2 caches are private to each core.
L3 cache is shared by all cores in a socket.
All caches are writeback.

8a. The single instruction cache at L1 is fast
but very small: why won't performance suffer
greatly if your program's kernel doesn't fit into
32 KiB?

The architecture includes a unified L2 and L3 cache. As a result, if
the working set of instructions doesn’t fit into L1, we can always
use the L2/L3 caches. Since the L2 and L3 caches are still quite
fast, performance won't be greatly impacted.

8b. Consider the following program, and assume
its x86-64 code fits entirely within the L1
instruction cache, and assume that the source and
destination do not overlap.

#define N <<you pick the constant>>

void transpose (int dst[N] [N], int src[N][N]) {
for (int 1 = 0; i < N; i++)
for (int j = 0; j < N; j++)
dst[j][i] = srcl[il[J];

Suppose this function is often executed in your
multithreaded application on the specified
machine. What values of N do you recommend for
good performance, and why? Look for local sweet
spots for N. State any further assumptions
you're making.

The best N will be one that will allow both the src and dst arrays to
fit entirely in one of the caches (ie L1, L2, or L3). In general, we
want to find an N that satisfies the equation:

4 bytes/int * N"2 ints/array * 2 arrays <= sizeof (cache)

For example, if we want to fit src and dst in the L1 cache:
4 * N~2 * 2 = 32 KiB

273 * N*2 = 2715

N*2 = 2712

N = 2”6 = 64

So, any N<64 will result in the src and dst arrays fitting entirely
in the L1 cache.

9. Section 5.9.2 of the book shows how to apply
the associative law to improve performance while
unrolling a loop. Can we use a similar idea to
improve performance by applying the distributive
law A*(B + C) == A*B + A*C? Why or why not?

There are two cases to consider. The first case is when A 1s the

accumulator.
(1) a = a*(b[i] + c[i])
(2) a = a*b[i] + a*c[i]

For (1), the bottleneck would be the multiplication operation, since
we can perform the addition of iteration i + 1 before waiting for the
multiplication of iteration i to finish. Thus, the critical path
would consist only of the multiplication.

For (2), the bottleneck involves the multiplication operations (both
of which can be done in parallel) and the addition operation. In this
case, the two multiplications and the addition must be done
sequentially; we cannot do the multiplication of iteration i + 1
while doing the addition of iteration i because the multiplication of

ANY

iteration i + 1 relies on the updated value of “a” from the addition
of iteration i. Thus, the critical path would consist of a

multiplication operation and an addition operation.

Since (2) 1s not as efficient as (1), the distributive law doesn’t

improve performance.

However, 1f you assume that the accumulator is b, we would have:

o

|
Q
=

* (b + c[i])
(2) b =ali] * b + a[i] * c[i]

Since the bottleneck is the same for both cases, applying the
distributive law doesn’t matter. In (1), the critical path involves
an addition and then a multiplication. The addition of iteration i +
1 cannot be done in parallel with the multiplication of iteration i
because the addition uses “b” which relies on the result produced by
the multiplication of the previous iteration. This is also true of

(2) .

