
CS33	Fall	2017	Midterm	1	Solutions	
	

1) (10	minutes)	For	each	variable	a,	b,	…,	h	in	the	following	C	program,	give	the	variable’s	
size	and	required	alignment.	Show	your	work	for	the	variable	'e'.	

 
struct s { int m1; long m2; };  
struct t { char m1[17];  
struct s m2; };  
union u { char m1[17];  
struct s m2; };  
struct v { struct s m1[17]; };  
struct w { char m1; char m2[17]; }; 
 
int a;  
int *b; // pointer to an int  
struct s c;  
struct t d;  
union u e; // show your work for this one  
struct v f;  
struct w g;  
void (*h) (void); // pointer to a function with no args or result 
 
 Size Alignment 
a 4B 4 
b 8B 8 
c 16B 8 
d 40B 8 
e 24B 8 
f 272B 8 
g 18B 1 
h 8B 8 
 

	
	

2) (10	minutes)	Consider	the	following	assembly-language	function: 
 

pushme:  
popq %rax  
pushq %rax  
callq foolish  

foolish:  
ret  

 
Assuming	it	is	declared	as	'long	pushme	(void);',	explain	what	it	returns,	from	the	caller’s	
viewpoint.	Give	each	instruction	executed	by	pushme	either	directly	or	indirectly	via	a	
subroutine	call,	and	briefly	explain	how	that	instruction	contributes	to	the	returned	
value.	
	

(2pt)	(Explain	anything)		



	
(3pt)	ret	is	executed	twice	

(3pt)	The	return	value	is	returned	by	pushme	
(0pt)	The	return	value	is	returned	by	foolish	

	
(5pt)	Returns	the	return	address	of	pushme	

(3pt)	Whatever	value	on	top	of	stack	
(3pt)	Original	value	on	top	of	stack	
(3pt)	Garbage	value	on	top	of	stack	
(3pt)	Arbitrary	value	on	top	of	stack 

	
3) The	popcntq	instruction,	available	on	recent	x86-64	processors,	counts	the	number	of	1	

bits	in	its	64-bit	operand,	and	stores	this	count	into	its	64-bit	destination.	The	GCC	
builtin	function	__builtin_popcountl	can	use	this	instruction.	For	example,	compiling	the	
C	code:		
	
int count_one_bits(long n) { 

return __builtin_popcountl(n);  
}  
	
could	generate	the	following	assembly-language	code:		
	
count_one_bits:  

popcntq %rdi, %rax  
ret 

	
(10	minutes)	Suppose	we	want	to	treat	a	'long'	as	a	string	of	bits,	and	we	want	to	count	
the	number	of	times	a	1	bit	is	adjacent	to	a	0	bit	in	the	'long'	integer.	This	count	is	
always	an	integer	in	the	range	0	through	63.	Write	a	C	function	count_adjne(n)	that	
implements	this	function.	For	example,	when	given	the	arguments	0,	1,	2,	3,	256,	-1,	-	2,	
and	0x5555555555555555,	count_adjne	should	return	0,	1,	2,	1,	2,	0,	1,	and	63	
respectively.	Use	__builtin_popcountl	in	your	implementation.	Do	not	use	any	loops	or	
conditional-branches.	
	

int count_adjne(long n) {  
return __builtin_popcountl((n ^ (n << 1)) & ~1);  

}  
 
int count_adjne(long n) {  

return __builtin_popcountl(n ^ (n >> 1));  
}  
 
int count_adjne(long n) {  

int zeroone = (~n >> 1) & n;  
int onezero = (~n << 1) & n;  
return __builtin_popcountl(zeroone) + 
__builtin_popcountl(onezero);  

} 



	
(10	minutes)	Give	the	x86-64	assembly-language	code	that	implements	the	count_adjne	
function.	Use	as	few	instructions	as	possible.	Do	not	use	jumps.	
	
	
	
int count_adjne(long n) {  

return __builtin_popcountl((n ^ (n << 1)) & ~1);  
}  
 
 
 
 
int count_adjne(long n) {  

return __builtin_popcountl(n ^ (n >> 1));  
}  
 
 
 
int count_adjne(long n) {  

int zeroone = (~n >> 1) & n;  
int onezero = (~n << 1) & n;  
return __builtin_popcountl(zeroone) + 
__builtin_popcountl(onezero);  

} 
 
 
 
 

 
4) During	class,	Dr.	Eggert	said	that	%rsp	must	be	a	multiple	of	16	when	a	function	is	

entered.	This	is	incorrect!	The	actual	requirement	is	that	(%rsp	+	8)	must	be	a	multiple	
of	16.		

	
Here	is	the	program	foo.c	that	led	Dr.	Eggert	astray:		
	
#include int main (void) { long l; return printf ("%p\n", &l); }  
	
He	compiled	and	ran	this	program	as	follows:		
$ gcc -g3 foo.c  
$ gdb a.out  
(gdb) b main  
Breakpoint 1 at Ox4004df: file foo.c, line 2.  
(gdb) r Starting program: /home/eggert/junk/a.out  
Breakpoint 1, main () at foo.c:2  
2 int main (void) { long 1; return printf ("%p\n", &l); }  
(gdb) p $rsp  
$1 = (void *) Ox7fffffffe230  
	



Since	%rsp	was	a	multiple	of	16,	he	concluded	(incorrectly)	that	the	stack	pointer	
alignment	requirement	applies	at	the	start	of	the	called	function.	•	To	see	what	went	
wrong,	here	are	two	more	GDB	commands	that	were	executed	immediately	after	the	"p	
$rsp"	command	noted	above:		
	
(gdb) p $rip  
$2 = (void (*)()) 0x4004df  
(gdb) disas  

  
(gdb) c  
Continuing. Ox7fffffffe238 [Inferior 1 (process 6908) exited with code 
017]  
	
Given	the	information	on	the	previous	page:	
(3	minutes)	What	is	at	location	0x400590?	
	

If	(	“%p\n”	)	{	3	points	}	
Else	if	(	‘format/string	argument	to	printf’	)	{	1	point	}	
Else	{	0	points	}	

	
(3	minutes)	Suppose	we	changed	the	only	instance	of	‘long’	in	foo.c	to	be	‘char’.	Which	
of	the	assembly-language	instructions	in	main	would	need	to	change,	and	why?	
	

Trick	question	–	nothing	would	need	to	change,	since	compiler	allocates	
enough	memory	to	store	a	long	we	can	just	use	lower	bytes	to	store	char	(3	
points)	
	

(6	minutes)	What	exactly	were	the	values	of	%rip	and	%rsp	just	before	the	first	
instruction	of	’main’	was	executed?	Express	them	as	hexadecimal	integers.		
	

	
%rip	=	0x0000004004d7	(3	points)	
%rsp	=	0x7fffffffffffe248	(3	points)	
	



	
	
(6	minutes)	Explain	why	“b	main;	r;	p	$rsp”	printed	a	multiple	of	16	even	though	the	
incoming	stack	pointer	for	'main'	was	not	a	multiple	of	16.		

	
(6pt)	Gdb	put	breakpoint	at	0x...4004df,	rather	than	at	main()	itself.	
(4pt)	Anything	related	to	breakpoint	being	put	
(2pt)	alignment	was	cited	as	the	reason		
	

(6	minutes)	Explain	why	the	program	outputs	"0x7fffffe238"	to	standard	output.	What	is	the	
relationship	between	this	number	and	the	stack	pointer	when	'main'	starts	and	how	do	the	
above	instructions	explain	this	relationship?		
	

	
	
(6pt)	Explanation	beginning	from	rsp	being	0x...248	with	how	each	instructions	
modifies	%rsp	
(4pt)	Brief	explanation	about	how	we	get	0x...238	with	rsp	being	at	0x...240,	or	
something	related	to	it	
(3pt)	%rsp	was	0x..230,	then	rsp	=	rsp	-	8	was	printed	
(2pt)	Value	printed	is	rsp	=	rsp	–	8	
Note:	Alignment	is	not	the	answer	here!!	
	



(10	minutes)	When	compiling	foo.c	with	–O2,	GCC	generates	the	following	valid	
implementation:		
	
(gdb)	disas	main		

	

	
	
Suppose	we	hand-optimize	'main'	by	replacing	the	above	code	with	the	following	machine	
instructions:		
	

	
	
Will	this	implementation	of	main	work	?If	so,	explain	why	and	exactly	how	the	output	will	
differ	from	that	of	the	original	implementation,	assuming	that	both	instances	of	‘main’	are	
called	the	same	way.	If	not,	explain	specifically	what	goes	wrong	and	why	?	

	
Note:	It’s	an	open	ended	question.	
- Both	yes	and	why	can	be	right	answers	based	on	how	you	explain	your	

conclusion.	
- (1pt)	Just	yes/no	
- (10pt)	Yes,	it	works.	This	is	tail	call	optimization.	Since	the	variable	has	not	

been	assigned	any	value,	might	simply	print	the	address	of	stack	pointer	
(address	of	return	address	of	main)	

o (7-8pt)	Tail	call	optimization	and	related	explanation	
o (5pt)	Obscure	reasons,	but	related	to	tail	call	optimization	
o (2-3pt)	Extremely	brief	explanation	related	to	above	points	

- (10pt)	No,	it	does	not.	%l	is	just	declared	and	has	not	been	assigned	a	value,	
Hence	compiler	might	allocate	it	in	any	random	place,	hence	might	contain	
garbage	value.	

o (8-10pt)	An	explanation	related	to	this	



o (7pt)	Tail	call	optimization	and	some	other	reason	related	to	this	
o (5pt)	Obscure	reasons,	but	related	to	tail	call	optimization		
o (2-3pt)	Extremely	brief	explanation	related	to	above	points		

 
 
 

 
 

5) (8	minutes)	Consider	the	following	assembly-language	implementation	of	the	C-
language	function		
	

'bool is_zero (long x) { return x == 0; }':  
is_zero:  

testq %rdi, %rdi  
setz %al  
ret  

	
In	recent	versions	of	the	x86-64,	the	pushfq	instruction	pushes	the	low-order	32	bits	of	
the	RFLAGS	register	onto	the	stack	as	a	4-byte	integer,	and	the	popfq	instruction	pops	
the	top	4-	byte	integer	of	the	stack	into	the	low-order	32-bits	of	the	RFLAGS	register,	
clearing	the	high-	order	32	bits.	Modify	the	above	machine	code	to	use	pushfq	and/or	
popfq	instead	of	setz.	Your	implementation	should	not	contain	branches	or	set*	
instructions.	Your	implementation	needs	to	set	only	the	low-	order	8	bits	of	%rax,	as	the	
caller	of	is_zero	will	ignore	all	the	other	bits	of	%rax.	If	bit	0	is	the	least-significant	bit,	
recall	that	RFLAGS’s	bit	6	is	ZF,	the	zero	flag.		
	

Pseudo	code		
1. pushfq	(4	bytes	in	stack)	
2. popfq	(into	eax)	
3. shift	right	6	bits	(we	want	bit	6)	
4. &	operation	with	1	
5. Return	

	
Rubric:	
- 1	mark	for	each	instruction	•		
- 1-2	score	depending	upon	order	of	instructions	

	
	

(8	minutes)	Bit	18	of	the	RFLAGS	register	is	the	AC	flag,	which	we	did	not	talk	about	in	
class.	If	AC	flag	is	1,	when	your	program	accesses	unaligned	storage,	the	x86-64	traps	
and	your	program	dumps	core.	For	example,	when	the	AC	flag	is	1,	the	instruction		
	
movl	15(%rsp),	%rax		
	



traps	if	%rsp	is	a	multiple	of	16.	since	the	argument	address	is	not	a	multiple	of	4.	Using	
the	instructions	described	above,	write	an	assembly-language	implementation	of	the	C	
function	'void	set_ac_flag(void);'	that	sets	the	AC	flag.	Your	function	should	also	clear	
the	high-order	32	bits	of	RFLAGS,	and	should	leave	the	remaining	31	bits	alone.		
	

Pseudo	code	
1. pushfq	(4	bytes	in	stack)	
2. load	(load	flag	into	reg)	
3. set	bit	18	of	register	using	OR	operation	
4. store	(push)	
5. popfq	

	
Rubric:		
- 1	mark	for	each	instruction	
- 1-2	score	depending	upon	order	of	instructions	

	
(10	minutes)	Why	would	a	program	want	to	call	the	'set_ac_flag'	function	defined	in	
(5b)?	Give	a	sound,	high-	level	reason,	not	a	lowlevel	answer	like	"because	the	
programmer	wanted	to	set	the	AC	flag".		
	

- Aligned	access	is	faster	
- No	alignment	slows	performance	
- When	we	write	c-program	and	want	to	know	whether	our	code	will	run	

other	machines	(e.g.	spark).	So	we	use	the	AC	flag	and	compile	it	on	x86.	If	
it	works	then	it	will	also	work	on	other	systems.	
	

Rubric:	
- At	least	5	marks	if	some	one	talks	about	performance.	Marks	depends	upon	

the	explanation.		
	
	


