—_— ~mm

UCLA Computer Science 33
Midterm 1

99 points, 99 minutes, open book, open notes.
Questions are equally weighted (11 min. each) .
Use a separate sheet of paper for each answer.
Put a big problem number at each sheet’s top.
Turn in your sheets in increasing numeric order.

(Fall 2015)

Name : Student ID:
|1||+|n||+:|»x+|||x+11||+[|1|+1|;|+1:||+|[r|+

_w _® |5 _m {7 _

ENECIRTII RS

||xl+|n||+|'x|+|:||+:|||+|11|+||||+ANN|+I|1-+

| sum

1 (11 minutes). You want to create a repeated
bit pattern in a 64-bit unsigned word. The
pattern repeats every 8 bits. For example,
repeating the bit-pattern 10011011 would yield
the word 0x9%b%S%b%b9%b9b9b9%b. Write a C function
rbp (p) that returns such a word, given an 8-bit
pattern p. Have your function execute as few
instructions as possible.

2 (11 minutes). The PDP-11 architecture is
"mixed-endian": within a 16-bit short word, the
least significant byte comes first, whereas
within a 32-bit long word, the *most* significant
short word comes first. Diagram how the signed
32-bit number -25306982 (-0x1822766) 1is
represented as a series of unsigned 8-bit bytes
(a) on a PDP-11, (b) on an x86-64 machine, and
(c) on a bigendian machine like the SPARC. Your
diagram should list the offset of each byte.
3 (11 minutes). Consider these two functions:
#include <stdbool.h>
bool pushme (unsigned long v) {
return 255 <= (v >> 3);
}
bool pullyou (long v) {
return ! (0 <= (v >> 3) &&

(v >> 3) < 255);

}

and this assembly-language implementation:

pushme: cmpg $2039, %rdi
seta %al
ret

pullyou:cmpg $2039, %rdi
seta %al
ret

a. Explain why those "2039"s are correct, even
though the source code does not mention 2039.

b. How can pushme and pullyou have identical
machine code, even though the functions have
different types and implementations? Explain.

4 (11 minutes). Would the following be a valid
implementation of (3)’s pushme and pullyou
functions? If not, explain why not. If so, give
another implementation of pushme and pullyou that
would be even shorter (i.e., would take fewer
bytes of machine code).

pushme: cmpq $2039, %rdi
seta %al
ret

pullyou: jmp pushme

5 (11 minutes). The following is a buggy
implementation of (3)’s pushme function. Three
of its instructions are incorrect. Fix the bugs
with as few changes as you can and briefly
explain why your fixes are needed.

pushme: pushg srbx
movqg %$rsp, %rbp
movqg srdi, -8 (%rbp)
movqg -8 (%rbp), %rax
shrq $3, %rax
cmpq $255, %rax
seta %al
popgq %$rbx
ret

b

Wee MBI E AL

LTTI—

6 (11 minutes). Explain what the following
assembly-language function does, at a high level.
Give C source code that corresponds to its
behavior as closely as possible.

mystery: movzbl %dil, %eax
movabs $0x101010101010101, $rdx

imul %rdx, $rax
retq

7 (11 minutes). What does the following
assembly-language code do? Briefly explain how to
use it from C source code, how it executes, and
what its behavior is from the C point of view.

callme: leaqg ($rdi, %rsi), %rax
callqg .L1
Ll ret

8 (11 minutes). Consider the following C code:

24 {

25 return ! badfun ();
26 }

27

28 int (*p) (void) = main;
and the following machine code generated for two
of its functions, in GDB disassembly format:

Dump of assembler code for function badfun:
0x400550 <+0>: sub $0x18, %rsp
0x400554 <+4>: mov 0x200ae5 (%$rip), ¥rax
0x601040 <p>
0x40055b <+11>: mov
0x400560 <+16>: mov
0x601048 <n>
0x400567 <+23>: mov
0x40056b <+27>: callg
0x400570 <+32>: mov
0x400574 <+36>: add
0x400578 <+40>: retqg
Dump of assembler code for function main:
0x400430 <+0>: sub $0x8, $rsp

$rax, 0x18 (%rsp)
0x200ael (%rip), %rax

Oxc (%rsp, $rax,4), %edi
0x400540 <output>

Oxc (%rsp), 3eax

$0x18, $rsp

1 #include <stdio.h> 0x400434 <+4>: callg 0x400550 <badfun>

2 #include <string.h> 0x400439 <+9>: test %eax, $eax

3 0x40043b <+11>: sete %al

4 long n = 3; 0x40043e <+14>: add $0x8, $rsp

5 extern int (*p) {(void); 0x400442 <+18>: movzbl %al, %eax

6 0x400445 <+21>: retqg

7 wvoid

8 output (int n) For each instruction in the machine code,

9 identify the corresponding source-code line
10 printf ("0x%x\n", n); number. If an instruction corresponds to two or
11} more source-code line numbers, write them all
12 down and explain.
13 int
14 badfun (void) 9 (11 minutes). When (8)’s program is run it
15 { outputs about a million lines of text and then
16 int 1i; dumps core with a segmentation fault. Explain why
17 memcpy (&i + 3, &p, sizeof p); this sm@mmbm~ in mw.acos detail as you can. Your
18 output (*(&i + n)); explanation should include what those text lines
19 return ij; look like, and why.
20 '}
21
22 int
23 main (void)

