Name /4{ ATAY,

CS 32
Spring 2009
Midterm Exam

May 6, 2009
David Smallberg

Problem # | Possible Actual
Points Points

¥ S

15)

35

15

Ol WN =

25

TOTAL 100

STUDENT ID #:

SIGNATURE:

OPEN BOOK, OPEN NOTES
NO ELECTRONIC DEVICES

ENJOY !

———

1. [10 points]
What is the output of the following program?

class Vehicle

{
public:
Vehicle() { cout << "V "; }
~Vehicle() { ogout <w< WA " o}
3
class Tire
{
publiics
Tire{) { coutis< "T "; }
~Tire() { cout << "~T "; }
Yz

class Wheel
{

public:
Wheel () { cout << "W "; }
~Wheel () { cout << "~W "; }
private:
Tire m_tire;

b

class Motorcycle : public Vehicle

{
publie:

Motoreyele s {& cout s M 2 i}

~Motorcycle() { cout << "~M "; 1}
private:

Wheel m_wheels[2];

0z

int main()

{ Loy
Motorcycle m; vV M °
cout << endl;
cout << dlf===="w< eondl;
Motorcycle* pm = &m;
cout e Btesamlr ceriand]

2. [15 points in all]

Consider this excerpt from a rather ordinary class representing a construction worker:

class Worker

{
public:
Worker (string nm, string s)
m_name (nm) , m_skill(s)
{}
string name() const { return m_name; }
string skill () const { return m_skill; }
private:
string m_name;
string m_skill;
¥;

Because we did not declare a destructor, copy constructor, or assignment operator for
the Worker class, the compiler writes those functions for us.

A construction crew is a collection of workers. We choose to represent a crew as a
dynamically allocated array of pointers to Workers. Here is an excerpt:

class Crew
{
public:
Crew(int lim)
m_size(0), m_maxCrewSize(lim)
‘
m_crew = new Worker*[lim];
}
void hire(string nm, string s)
{
1f (m_size < m _maxCrewSize)
i
m_crew[m_size] = new Worker (nm, s);
m_size++;
3
}
// other functions not shown
private:
Worker** m_crew;
int m_size;
int m_maxCrewSize;

g

The first m_s1ze elements of the m_crew array contain pointers to dynamically
allocated workers; the remaining elements have no particular value.

The users of the Crew class will need to copy Crew objects and assign one Crew
object to another.

For parts a, b, and ¢ below, you may implement additional Crew class helper
functions if you like. Make no changes or additions to the Worker class.

a. [5 points]
Complete the implementation of the destructor for the Crew class:

Crew: :~Crew()

{

b. [5 points]

Implement the copy constructor for the Crew class:

@ L (- w7,
rew. (,"(__;’f;:?,"‘ bl A

L

M_ (e

c. [5 points]

Implement the assignment operator for the Crew class:

Crew:. Opecatyr= ‘f\ const Crenhk other) %

's v D p ow £~
M ATEW = TEmp, Wh_(C réin

Io

O gaf Y _ IV . - : o
T T TOREAAON S 28 - ‘f‘é’:ﬂf’. m_pesc (rev s

"V

sl 2 e = '.‘""\‘"::‘5'3 O Civo ”
7 M ie

Nt

re ~»§;”if P *}s LS s p
&

3. [35 points in all]

Here is an excerpt from the definition of a singly-linked list class. A LinkedList
object represents a singly-linked list of integers. The implementation uses no dummy
node, and the list end is indicated by the last node having NULL as its m_next data
member. The empty list is represented by m_head and m_tail being NULL.

class LinkedList

{
public:
LinkedList () ; // creates an empty list

void push_back(int v);

void unique() ;

bool dominates (LinkedList& other) const

{ return dom(m_head, other.m_head); }
private:

struct Node

{

Node (int v, Node* n) : m_value(v), m_next(n) {)
int m_value;
Node* m_next;

¥
Node* m_head; // points to first Node in the list

Node* m_tail; // points to last Node in the list
bool dom(const Node* pl, const Node* p2) const;

Y

For this problem, we will ask you to write some function implementations. Be sure
your code is syntactically correct as well as functionally correct. Notice that the
Node type has no default constructor.

a. [5 points]

The push_back function appends to the end of the list a node whose value is v.
Write an implementation of this function in the space below.

ft e, é g’
5

b. [15 points]

For each group of consecutive nodes with identical values, the unigue member
function deletes all but the first node of that group, leaving the list containing nodes
where each node's value is different from the value of the following node. For
example, if the LinkedList a contained nodes with values 533382255597722
2, then after the call a.unique (), the list a would contain 538259 7 2.

Write an implementation of the unique member function in the space below.

c. [15 points]

A sequence s dominates a sequence t if s has at least as many elements as t, and for all
k, the kth element of s is greater than or equal to the kth element of t (if t has a kth
element). Every sequence (including the empty sequence) dominates the empty
sequence. As examples,

the sequence 25357 the sequence 25357

dominates 13347 does not dominate 1 44 4 (because 3 <4)

Write a recursive implementation of the member function named dom, which accepts
two Node pointers, each pointing to a linked list of Nodes, and returns a bool. The
function returns true if the first linked list dominates the second. You will receive a
score of zero on this problem if the body of your dom function is more than 15
statements long or if it contains any occurrence of the keywords while, for, or

goto.

Write the dom member function here:

4. [15 points]

Write the seventh digit of your UCLA student ID here: |
Consider the Person structure and the two functions below:

struct Person {
string name;
int friends([3]; // 3 best friends
bool asked;

¥

void searchSocialNetwork (Person arr[], int start)
{ VetrTa/
stack<int> yetToAsk; A
vetToAsk.push (start) ; 7 2,
while (! yetToAsk.empty ()) o
{ A
int p = yetToAsk.top(); %i :
yvetToAsk.pop () ;
1£%(" ViarrTpl . asked™)

{
arr[p] .asked = true; %
cout << arr[p].name << endl;
for (int k = 0; k < 3; k++) // 3 friends
vetToAsk.push(arr[p].friends[k]);
}
}
}
int main()
{
Person people[l0] = {
/2. 0. %/, YLy, { 3, 5, 2}, false },
/* 1 */ { "Ricky", {7, 6, 5}, false },7
/* 2 */ { "Fred", {0, 3, 8}, false }, Trrk
VAL v vEBEhelt e { L9 0y danfabsen))
/* 4 */ { "Jerry", {6, 5, 81}, false 1},
/* 5 */ { "George", { 0, 1, 4 }, false }, 7T u
/* 6 */ { "Elaine", { 1, 9, 4 }, false },i"
/* 7 */ { "Kramer", { 9, 8, 1 }, false },!
/* 8 */ { "Ralph", { 4, 2, 7}, false },7
/* 9 */ { "E4", {3, 6, 71}, false },
¥i
int s;

cin >> sg; // Enter the seventh digit of your student ID number
searchSocialNetwork (people, s);

If you enter the seventh digit of your student ID where indicated, what is printed by
the above program?

3.

[25 points in all]
a. [12 points]

You have been hired by Wally Wall's Wallet World to create a set of C++ classes for
their new electronic wallet device. For the first phase, you are to write a C++ class
named Wallet. Wally Wall expects that you will eventually be deriving other classes
from your Wallet class, so you should design it appropriately. Here is what you know
about the Wallet class:

e When a Wallet object is constructed, the user must provide a double
representing the initial number of dollars in the wallet. (If the amount
specified is negative, treat it as 0.)

e All wallets allow the user to determine whether the wallet has any money in it
with an isEmpty() method. This method should return a bool that is true iff the
amount of money in the wallet is zero. No derived class will ever determine
the emptiness of the wallet in a different manner.

e All wallets have a deposit() method. This method allows the user to add more
dollars to the wallet. It accepts a double parameter and adds that number of
dollars to the amount already in the wallet. (If the amount is negative, treat it
as 0.)

e The amount in a wallet can be determined by a value() method. This method
takes no arguments and returns a double, the number of dollars currently in
the wallet.

(Notice there's no way to get your money out of the wallet. That's for Release 2.0...)

Using your best style, write the class definition and method implementations for your
Wallet. Be sure to use public, private, and const appropriately. Your answer
must not contain the word protected. (You may continue onto the next page.)

(You may continue your answer to part a on this page.)

Walle + 2 Wallet ((double mitial) §
1‘? (;r\;'ﬁ.af '>0,0) w,ua&«g‘;': 404;1“&&1{;

else m_value - o
5 ' 4

boo! Wallet® s Empty () conet §
3 P A A
Ay {’f"&, V;‘»{’gﬂ e > 0'°) rg-fw,a ‘{ag’sg j

vedurn ‘;”:"igﬁ y

voil Wallet i deposit (dable add) §

i3 P Jalag + = .(s*zj;

re ‘k;uﬁ W‘s.,v‘nﬂtaﬁi:

gt vt

=

b. [13 points]

Since you did such a great job building your Wallet class, Wally Wall wants you to
build a derived wallet class for U.S. travelers' use in the U.K.: a class named
UKWallet. The interface to this class lets users deposit and query pounds sterling
instead of dollars. Here is what you know about UKWallet:

1. When a UKWallet object is constructed, the user must specify a conversion
factor, the number of dollars per pound. (If this amount is not positive, treat it as
1.50) The initial amount of money in a UKWallet is always O.

2. The UKWallet has a deposit() method that allows the user to add a number of
pounds to the wallet. It accepts a double parameter representing the number of
pounds (which should be treated as 0 if negative). All amounts are first converted
to dollars before they are stored in the wallet, using the conversion factor supplied
at construction time.

3. The UKWallet has a value() method. This method takes no arguments and returns
a double, the number of pounds in the wallet, using the conversion factor
provided during construction to convert from the stored amount (which is in
dollars) to the amount to return (which is in pounds).

Using your best style, write the class definition and method implementations for your
UKWallet class. Avoid needless redundancy in your implementation. (You may
continue onto the next page.)

o

(You may continue your answer to part b on this page.)

Ukwaite+:: Uk wallet (&WHQ condeision) ¢
M. Value (o)

i';((Dﬁjr’%q}ﬂ > ﬂ‘ﬁ } m.ﬁ{jﬂ Uf_}[j b lanv?i’g;@ﬁ ¥
4

s) ..
€he m_owonvert = Jeo
i Vi ;’p

3

vord UkwWalig4 (;f{g; o5t { double add) ‘é
F (»141 & 3‘0} m{vfb'rf\,!;

m.value 4= add /m,(g,aqéi'g

s

st d

Dkwated t value() §
Feben mvalueymonvect

gl

